
Eric Monflier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladated chitosan-halloysite bead as an efficient catalyst for hydrogenation of lubricants. Materials Chemistry and Physics, 2022, 278, 125506.	2.0	14
2	Unnatural cyclodextrins can be accessed from enzyme-mediated dynamic combinatorial libraries. Chemical Communications, 2022, 58, 2287-2290.	2.2	4
3	Pd on ligand-decorated chitosan as an efficient catalyst for hydrofinishing polyalphaoleï¬ns: Experimental and computational studies. Journal of Physics and Chemistry of Solids, 2022, 164, 110611.	1.9	6
4	Interesterification of triglycerides with methyl acetate for biodiesel production using a cyclodextrin-derived SnO@γ-Al2O3 composite as heterogeneous catalyst. Fuel, 2022, 321, 124026.	3.4	7
5	Effect of Functional Group on the Catalytic Activity of Lipase B from Candida antarctica Immobilized in a Silica-Reinforced Pluronic F127/α-Cyclodextrin Hydrogel. Gels, 2022, 8, 3.	2.1	3
6	Epimerization of isosorbide catalyzed by homogeneous ruthenium-phosphine complexes: A new step towards an industrial process. Inorganica Chimica Acta, 2021, 515, 120094.	1.2	2
7	Aqueous Biphasic Hydroaminomethylation Enabled by Methylated Cyclodextrins: Sensitivity Analysis for Transfer into a Continuous Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 273-283.	3.2	7
8	Cyclodextrins: a new and effective class of co-modulators for aqueous zirconium-MOF syntheses. CrystEngComm, 2021, 23, 2764-2772.	1.3	11
9	Molecular modeling of cyclodextrin inclusion complexes. Chemical Modelling, 2021, , 72-99.	0.2	1
10	Asymmetric hydrogenation of ethyl pyruvate over aqueous dispersed Pt nanoparticles stabilized by a cinchonidine-functionalized Î ² -cyclodextrin. Catalysis Communications, 2021, 150, 106272.	1.6	2
11	Robust Ruthenium Catalysts Supported on Mesoporous Cyclodextrin-Templated TiO2-SiO2 Mixed Oxides for the Hydrogenation of Levulinic Acid to γ-Valerolactone. International Journal of Molecular Sciences, 2021, 22, 1721.	1.8	1
12	Cyclodextrin-assisted catalytic hydrogenation of hydrophobic substrates with halloysite immobilized ruthenium NPs dispersed in aqueous phase. Journal of the Indian Chemical Society, 2021, 98, 100034.	1.3	5
13	Oxidation of 2,5-diformfylfuran to 2,5-furandicarboxylic acid catalyzed by Candida antarctica Lipase B immobilized in a cyclodextrin-templated mesoporous silica. The critical role of pore characteristics on the catalytic performance. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111606.	2.5	7
14	Hydrohydroxymethylation of Ethyl Ricinoleate and Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 9444-9454.	3.2	18
15	Cyclodextrins as multitask agents for metal nano-heterogeneous catalysis: a review. Environmental Chemistry Letters, 2021, 19, 4327-4348.	8.3	14
16	First Steps to Rationalize Host–Guest Interaction between α-, β-, and γ-Cyclodextrin and Divalent First-Row Transition and Post-transition Metals (Subgroups VIIB, VIIIB, and IIB). Inorganic Chemistry, 2021, 60, 930-943.	1.9	9
17	Ultrasound-assisted synthesis of NiO nanoparticles and their catalytic application for the synthesis of trisubstituted imidazoles under solvent free conditions. Catalysis Communications, 2021, 161, 106366.	1.6	7
18	Reductive Hydroformylation of Isosorbide Diallyl Ether. Molecules, 2021, 26, 7322.	1.7	11

#	Article	IF	CITATIONS
19	Selective Rutheniumâ€Catalyzed Hydroaminomethylation of Unsaturated Oleochemicals. European Journal of Lipid Science and Technology, 2020, 122, 1900131.	1.0	4
20	Supported ruthenium nanoparticles on ordered mesoporous carbons using a cyclodextrin-assisted hard-template approach and their applications as hydrogenation catalysts. Journal of Catalysis, 2020, 383, 343-356.	3.1	19
21	Co3O4/C and Au supported Co3O4/C nanocomposites – Peculiarities of fabrication and application towards oxygen reduction reaction. Materials Chemistry and Physics, 2020, 241, 122332.	2.0	4
22	Fréchet-type metallodendrons with N,P-iminophosphine Rh(I) complexes at the focal point: Synthesis and evaluation in the hydroformylation of 1-octene. Inorganica Chimica Acta, 2020, 502, 119341.	1.2	4
23	Anionic Amphiphilic Cyclodextrins Bearing Oleic Grafts for the Stabilization of Ruthenium Nanoparticles Efficient in Aqueous Catalytic Hydrogenation. ChemCatChem, 2020, 12, 1013-1018.	1.8	8
24	Palladium nanoparticles supported on nitrogen doped porous carbon material derived from cyclodextrin, glucose and melamine based polymer: promising catalysts for hydrogenation reactions. Pure and Applied Chemistry, 2020, 92, 827-837.	0.9	4
25	Rhodium-Catalyzed Aqueous Biphasic Olefin Hydroformylation Promoted by Amphiphilic Cyclodextrins. Catalysts, 2020, 10, 56.	1.6	18
26	Oneâ€Pot Twoâ€Step Synthesis of Hydroxymethylated Unsaturated VHOSO and Its Application to the Synthesis of Biobased Polyurethanes. European Journal of Lipid Science and Technology, 2020, 122, 2000158.	1.0	6
27	Fast Microwave Synthesis of Gold-Doped TiO2 Assisted by Modified Cyclodextrins for Photocatalytic Degradation of Dye and Hydrogen Production. Catalysts, 2020, 10, 801.	1.6	10
28	Particle size effect in the mechanically assisted synthesis of β-cyclodextrin mesitylene sulfonate. Beilstein Journal of Organic Chemistry, 2020, 16, 2598-2606.	1.3	7
29	Catalytic reduction of 4-nitrophenol with gold nanoparticles stabilized by large-ring cyclodextrins. New Journal of Chemistry, 2020, 44, 21007-21011.	1.4	17
30	Synthesis of novel catalytic composite nanofibers containing ruthenium nanoparticles stabilized by a citric acid-β-cyclodextrin polymer. Nanoscale Advances, 2020, 2, 2087-2098.	2.2	3
31	New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules, 2020, 10, 339.	1.8	13
32	Multiscale Structure of Starches Grafted with Hydrophobic Groups: A New Analytical Strategy. Molecules, 2020, 25, 2827.	1.7	13
33	Continuous hydroformylation of 1-decene in an aqueous biphasic system enabled by methylated cyclodextrins. Green Chemistry, 2020, 22, 3809-3819.	4.6	18
34	Metal Nanoparticles and Cyclodextrins for Catalytic Applications. Environmental Chemistry for A Sustainable World, 2020, , 219-279.	0.3	0
35	Cyclodextrins Based Supramolecular Catalysis. Series on Chemistry, Energy and the Environment, 2020, , 81-115.	0.3	0
36	cRhâ€Catalyzed Hydroformylation of Divinylglycol: An Effective Way to Access 2,7â€Dioxadecalinâ€3,8â€diol. European Journal of Organic Chemistry, 2019, 2019, 4372-4376.	1.2	0

#	Article	IF	CITATIONS
37	Confinement of <i>Candida Antarctica</i> Lipase B in a Multifunctional Cyclodextrin-Derived Silicified Hydrogel and Its Application as Enzymatic Nanoreactor. ACS Applied Bio Materials, 2019, 2, 5568-5581.	2.3	8
38	Palladated cyclodextrin and halloysite containing polymer and its carbonized form as efficient hydrogenation catalysts. Applied Organometallic Chemistry, 2019, 33, e5213.	1.7	3
39	Highly Waterâ€Soluble Amphiphilic Cyclodextrins Bearing Branched and Cyclic Oleic Grafts. European Journal of Organic Chemistry, 2019, 2019, 4863-4868.	1.2	4
40	Hydrogenation of hydrophobic substrates catalyzed by gold nanoparticles embedded in Tetronic/cyclodextrin-based hydrogels. New Journal of Chemistry, 2019, 43, 9865-9872.	1.4	10
41	One pot synthesis of aminohydroxylated triglycerides under aqueous biphasic conditions. Catalysis Communications, 2019, 125, 37-42.	1.6	9
42	First Evidence of Cyclodextrin Inclusion Complexes in a Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 6345-6351.	3.2	41
43	Eggplant-Derived Biochar-Halloysite Nanocomposite as Supports of Pd Nanoparticles for the Catalytic Hydrogenation of Nitroarenes in the Presence of Cyclodextrin. ACS Sustainable Chemistry and Engineering, 2019, 7, 6720-6731.	3.2	84
44	Synthesis of 2-Hydroxydodecyl Starch Ethers: Importance of the Purification Process. Industrial & Engineering Chemistry Research, 2019, 58, 2437-2444.	1.8	5
45	Oleic Acid Based Cyclodextrins for the Development of New Hydrosoluble Amphiphilic Compounds. European Journal of Organic Chemistry, 2019, 2019, 1236-1241.	1.2	6
46	CHAPTER 11. Natural Oil Polyols. RSC Green Chemistry, 2019, , 260-284.	0.0	0
47	New water-soluble Schiff base ligands based on β-cyclodextrin for aqueous biphasic hydroformylation reaction. Pure and Applied Chemistry, 2018, 90, 845-855.	0.9	7
48	Unconventional media and technologies for starch etherification and esterification. Green Chemistry, 2018, 20, 1152-1168.	4.6	75
49	Rhodium catalyzed selective hydroaminomethylation of biorenewable eugenol under aqueous biphasic condition. Molecular Catalysis, 2018, 452, 108-116.	1.0	10
50	Cyclodextrins and Nanostructured Porous Inorganic Materials. Environmental Chemistry for A Sustainable World, 2018, , 105-153.	0.3	1
51	Robust Mesoporous CoMo/γ-Al ₂ O ₃ Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method. ACS Applied Materials & Interfaces, 2018, 10, 12562-12579.	4.0	18
52	An ambient-temperature aqueous synthesis of zirconium-based metal–organic frameworks. Green Chemistry, 2018, 20, 5292-5298.	4.6	54
53	Pillar5arenes as Supramolecular Hosts in Aqueous Biphasic Rhodium atalyzed Hydroformylation of Long Alkylâ€chain Alkenes. ChemCatChem, 2018, 10, 5306-5313.	1.8	11
54	Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols. Journal of Catalysis, 2018, 368, 172-189.	3.1	23

#	Article	IF	CITATIONS
55	Cyclodextrin-based supramolecular assemblies: a versatile toolbox for the preparation of functional porous materials. Environmental Chemistry Letters, 2018, 16, 1393-1413.	8.3	15
56	Synthesis and hydroformylation evaluation of Fréchet-type organometallic dendrons with <i>N</i> , <i>O</i> -salicylaldimine Rh(<scp>i</scp>) complexes at the focal point. Dalton Transactions, 2018, 47, 9418-9429.	1.6	14
57	Amines as effective ligands in iridium-catalyzed decarbonylative dehydration of biosourced substrates. Catalysis Science and Technology, 2018, 8, 3948-3953.	2.1	8
58	Pd nanoparticles immobilized on halloysite decorated with a cyclodextrin modified melamine-based polymer: a promising heterogeneous catalyst for hydrogenation of nitroarenes. New Journal of Chemistry, 2018, 42, 15733-15742.	1.4	48
59	Hydroaminomethylation of oleochemicals: A comprehensive overview. European Journal of Lipid Science and Technology, 2018, 120, 1700190.	1.0	13
60	Catalysis in Cyclodextrin-Based Unconventional Reaction Media: Recent Developments and Future Opportunities. ACS Sustainable Chemistry and Engineering, 2017, 5, 3598-3606.	3.2	46
61	Highly regio-selective hydroformylation of biomass derived eugenol using aqueous biphasic Rh/TPPTS/CDs as a greener and recyclable catalyst. Molecular Catalysis, 2017, 436, 157-163.	1.0	16
62	A hydroaminomethylation/hydrohydroxymethylation sequence for the one pot synthesis of aminohydroxytriglycerides. Green Chemistry, 2017, 19, 1940-1948.	4.6	13
63	Cyclodextrin-Directed Synthesis of Gold-Modified TiO ₂ Materials and Evaluation of Their Photocatalytic Activity in the Removal of a Pesticide from Water: Effect of Porosity and Particle Size. ACS Sustainable Chemistry and Engineering, 2017, 5, 3623-3630.	3.2	43
64	Green and Scalable Palladiumâ€onâ€Carbonâ€Catalyzed Tsuji–Trost Coupling Reaction Using an Efficient and Continuous Flow System. European Journal of Organic Chemistry, 2017, 2017, 1078-1085.	1.2	10
65	Enhance the rheological and mechanical properties of clayey materials by adding starches. Construction and Building Materials, 2017, 139, 602-610.	3.2	21
66	Nonconventional Three-Component Hierarchical Host–Guest Assembly Based on Mo-Blue Ring-Shaped Giant Anion, γ-Cyclodextrin, and Dawson-type Polyoxometalate. Journal of the American Chemical Society, 2017, 139, 14376-14379.	6.6	81
67	Acid-tolerant cyclodextrin-based ruthenium nanoparticles for the hydrogenation of unsaturated compounds in water. Catalysis Science and Technology, 2017, 7, 5982-5992.	2.1	22
68	Deep eutectic solvents as green absorbents of volatile organic pollutants. Environmental Chemistry Letters, 2017, 15, 747-753.	8.3	66
69	Water-soluble phosphane-substituted cyclodextrin as an effective bifunctional additive in hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 3823-3830.	2.1	20
70	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additiveâ€Controlled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie - International Edition, 2017, 56, 10564-10568.	7.2	25
71	Hydroformylation of Alkenes in a Planetary Ball Mill: From Additiveâ€Controlled Reactivity to Supramolecular Control of Regioselectivity. Angewandte Chemie, 2017, 129, 10700-10704.	1.6	11
72	Polyoxometalate, Cationic Cluster, and γ-Cyclodextrin: From Primary Interactions to Supramolecular Hybrid Materials. Journal of the American Chemical Society, 2017, 139, 12793-12803.	6.6	137

#	Article	IF	CITATIONS
73	Facile preparation of Ni/Al2O3 catalytic formulations with the aid of cyclodextrin complexes: Towards highly active and robust catalysts for the direct amination of alcohols. Journal of Catalysis, 2017, 356, 111-124.	3.1	52
74	Tetronics/cyclodextrin-based hydrogels as catalyst-containing media for the hydroformylation of higher olefins. Catalysis Science and Technology, 2017, 7, 114-123.	2.1	21
75	Unconventional Approaches Involving Cyclodextrin-Based, Self-Assembly-Driven Processes for the Conversion of Organic Substrates in Aqueous Biphasic Catalysis. Catalysts, 2017, 7, 173.	1.6	37
76	Transition Metal Complexes Coordinated by Water Soluble Phosphane Ligands: How Cyclodextrins Can Alter the Coordination Sphere?. Molecules, 2017, 22, 140.	1.7	4
77	Superstructures with cyclodextrins: chemistry and applications III. Beilstein Journal of Organic Chemistry, 2016, 12, 937-938.	1.3	1
78	Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules, 2016, 21, 1748.	1.7	94
79	β-Cyclodextrins Decrease Cholesterol Release and ABC-Associated Transporter Expression in Smooth Muscle Cells and Aortic Endothelial Cells. Frontiers in Physiology, 2016, 7, 185.	1.3	28
80	Cyclodextrins as effective additives in AuNP-catalyzed reduction of nitrobenzene derivatives in a ball-mill. Green Chemistry, 2016, 18, 5500-5509.	4.6	58
81	Cleavage of Benzyl Phosphonium Salts as Efficient Bypass for the Synthesis of Disulfonated Alkyldiphenylphosphanes Bearing an Oleum‧ensitive Alkyl Group. European Journal of Organic Chemistry, 2016, 2016, 3322-3325.	1.2	2
82	Cyclodextrin-cobalt (II) molecule-ion pairs as precursors to active Co3O4/ZrO2 catalysts for the complete oxidation of formaldehyde: Influence of the cobalt source. Journal of Catalysis, 2016, 341, 191-204.	3.1	46
83	Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development. European Journal of Lipid Science and Technology, 2016, 118, 26-35.	1.0	38
84	Greener Paal–Knorr Pyrrole Synthesis by Mechanical Activation. European Journal of Organic Chemistry, 2016, 2016, 31-35.	1.2	41
85	Cyclodextrins as Porous Material for Catalysis. , 2016, , 15-42.		4
86	Ring opening polymerization of ε-caprolactone in the presence of wet β-cyclodextrin: effect of the operative pressure and of water molecules in the β-cyclodextrin cavity. RSC Advances, 2016, 6, 90290-90299.	1.7	17
87	Conjugated Dienyl Derivatives by Green Bisallylic Substitution: Synthetic and Mechanistic Insight. ChemCatChem, 2016, 8, 2321-2328.	1.8	6
88	Active hydrogenation Rh nanocatalysts protected by new self-assembled supramolecular complexes of cyclodextrins and surfactants in water. RSC Advances, 2016, 6, 108125-108131.	1.7	9
89	Rhodium-catalyzed one pot synthesis of hydroxymethylated triglycerides. Green Chemistry, 2016, 18, 6687-6694.	4.6	32
90	Mesoporous RuO ₂ /TiO ₂ composites prepared by cyclodextrin-assisted colloidal self-assembly: towards efficient catalysts for the hydrogenation of methyl oleate. RSC Advances, 2016, 6, 14570-14579.	1.7	17

#	Article	IF	CITATIONS
91	A self-emulsifying catalytic system for the aqueous biphasic hydroformylation of triglycerides. Catalysis Science and Technology, 2016, 6, 3064-3073.	2.1	16
92	Photocatalysis of Volatile Organic Compounds in water: Towards a deeper understanding of the role of cyclodextrins in the photodegradation of toluene over titanium dioxide. Journal of Colloid and Interface Science, 2016, 461, 317-325.	5.0	29
93	Cyclodextrins as Multitask Agents in Nanocatalysis. , 2016, , 1151-1175.		Ο
94	Recent developments in cyclodextrinâ€mediated aqueous biphasic hydroformylation and tsuji–trost reactions. Applied Organometallic Chemistry, 2015, 29, 580-587.	1.7	26
95	Biphasic Palladiumâ€Catalyzed Hydroesterification in a Polyol Phase: Selective Synthesis of Derived Monoesters. ChemSusChem, 2015, 8, 2133-2137.	3.6	17
96	Tetrasulfonated 1,2â€Bis(diphenylphosphanyl)ethane as a Building Block for the Synthesis of Disulfonated Alkyldiphenylphosphanes. European Journal of Organic Chemistry, 2015, 2015, 5509-5512.	1.2	2
97	Cyclodextrins Modified by Metal-Coordinating Groups for Aqueous Organometallic Catalysis: What Remains to be Done?. Current Organocatalysis, 2015, 3, 24-31.	0.3	14
98	Selective Secondary Face Modification of Cyclodextrins by Mechanosynthesis. Journal of Organic Chemistry, 2015, 80, 6259-6266.	1.7	39
99	Thermoresponsive self-assembled cyclodextrin-end-decorated PNIPAM for aqueous catalysis. Chemical Communications, 2015, 51, 2328-2330.	2.2	13
100	Rhodium catalyzed hydroformylation of 1-decene in low melting mixtures based on various cyclodextrins and N,N′-dimethylurea. Catalysis Communications, 2015, 63, 62-65.	1.6	37
101	Homogenous catalytic hydrogenation of bicarbonate with water soluble aryl phosphine ligands. Inorganica Chimica Acta, 2015, 431, 132-138.	1.2	6
102	Cyclodextrins as first and second sphere ligands for Rh(I) complexes of lower-rim PTA derivatives for use as catalysts in aqueous phase hydrogenation. Catalysis Communications, 2015, 63, 74-78.	1.6	9
103	Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis. Dalton Transactions, 2015, 44, 13504-13512.	1.6	11
104	Palladium-catalyzed hydroesterification of olefins with isosorbide in standard and BrÃ,nsted acidic ionic liquids. Catalysis Communications, 2015, 69, 143-146.	1.6	6
105	Supramolecular Emulsifiers in Biphasic Catalysis: The Substrate Drives Its Own Transformation. ACS Catalysis, 2015, 5, 4288-4292.	5.5	18
106	Ruthenium-containing β-cyclodextrin polymer globules for the catalytic hydrogenation of biomass-derived furanic compounds. Green Chemistry, 2015, 17, 2444-2454.	4.6	37
107	Catalytic Decarbonylation of Biosourced Substrates. ChemSusChem, 2015, 8, 1585-1592.	3.6	25
108	Rhodium catalyzed hydroformylation assisted by cyclodextrins in biphasic medium: Can sulfonated naphthylphosphanes lead to active, selective and recyclable catalytic species?. Catalysis Today, 2015, 247, 47-54.	2.2	15

#	Article	IF	CITATIONS
109	6. Biomass-derived molecules conversion to chemicals using heterogeneous and homogeneous catalysis. , 2015, , 141-164.		0
110	Evaluation of surface properties and pore structure of carbon on the activity of supported Ru catalysts in the aqueous-phase aerobic oxidation of HMF to FDCA. Applied Catalysis A: General, 2015, 506, 206-219.	2.2	65
111	Synthesis and characterization of a new photoinduced switchable β-cyclodextrin dimer. Beilstein Journal of Organic Chemistry, 2014, 10, 2874-2885.	1.3	20
112	Cyclodextrin-grafted polymers functionalized with phosphanes: a new tool for aqueous organometallic catalysis. Beilstein Journal of Organic Chemistry, 2014, 10, 2642-2648.	1.3	10
113	Organometallic synthesis of water-soluble ruthenium nanoparticles in the presence of sulfonated diphosphines and cyclodextrins. Materials Research Society Symposia Proceedings, 2014, 1675, 219-225.	0.1	2
114	Multifunctional cyclodextrin-based N,N-bidentate ligands for aqueous Heck arylation. Applied Catalysis A: General, 2014, 479, 1-8.	2.2	13
115	Limits of the Inversion Phenomenon in Triazolylâ€&ubstituted βâ€Cyclodextrin Dimers. European Journal of Organic Chemistry, 2014, 2014, 1547-1556.	1.2	19
116	Access to Pyrrole Derivatives in Water with the Assistance of Methylated Cyclodextrins. European Journal of Organic Chemistry, 2014, 2014, 4356-4361.	1.2	13
117	Low melting mixtures based on β-cyclodextrin derivatives and N,N′-dimethylurea as solvents for sustainable catalytic processes. Green Chemistry, 2014, 16, 3876-3880.	4.6	50
118	Understanding the Role of Cyclodextrins in the Self-Assembly, Crystallinity, and Porosity of Titania Nanostructures. Langmuir, 2014, 30, 11812-11822.	1.6	22
119	Hydrogen Production by Selective Dehydrogenation of HCOOH Catalyzed by Ru-Biaryl Sulfonated Phosphines in Aqueous Solution. ACS Catalysis, 2014, 4, 3002-3012.	5.5	68
120	Temperature-dependent formation of Ru-based nanocomposites: structures and properties. RSC Advances, 2014, 4, 26847.	1.7	3
121	Block copolymer–cyclodextrin supramolecular assemblies as soft templates for the synthesis of titania materials with controlled crystallinity, porosity and photocatalytic activity. RSC Advances, 2014, 4, 40061-40070.	1.7	16
122	A direct novel synthesis of highly uniform dispersed ruthenium nanoparticles over P6mm ordered mesoporous carbon by host–guest complexes. Journal of Materials Chemistry A, 2014, 2, 6641-6648.	5.2	12
123	Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catalysis Science and Technology, 2014, 4, 1899.	2.1	100
124	Evidence for the existence of crosslinked crystalline domains within cyclodextrin-based supramolecular hydrogels through sol–gel replication. RSC Advances, 2014, 4, 8200.	1.7	22
125	Aqueous Heck Arylation of Acrolein Derivatives: The Role of Cyclodextrin as Additive. Topics in Catalysis, 2014, 57, 1550-1557.	1.3	3
126	Investigating the effect of randomly methylated Î ² -cyclodextrin/block copolymer molar ratio on the template-directed preparation of mesoporous alumina with tailored porosity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2014, 80, 323-335.	0.9	9

#	Article	IF	CITATIONS
127	Synthesis of 1,4:3,6â€Dianhydrohexitols Diesters from the Palladiumâ€Catalyzed Hydroesterification Reaction. ChemSusChem, 2014, 7, 3157-3163.	3.6	15
128	Base directed palladium catalysed Heck arylation of acrolein diethyl acetal in water. Applied Catalysis A: General, 2014, 469, 250-258.	2.2	10
129	Cyclodextrin-based systems for the stabilization of metallic(0) nanoparticles and their versatile applications in catalysis. Catalysis Today, 2014, 235, 20-32.	2.2	83
130	Synergetic Effect of Randomly Methylated β-Cyclodextrin and a Supramolecular Hydrogel in Rh-Catalyzed Hydroformylation of Higher Olefins. ACS Catalysis, 2014, 4, 2342-2346.	5.5	32
131	Hydroformylation of vegetable oils and the potential use of hydroformylated fatty acids. Lipid Technology, 2013, 25, 175-178.	0.3	20
132	β-Cyclodextrins grafted with chiral amino acids: A promising supramolecular stabilizer of nanoparticles for asymmetric hydrogenation?. Applied Catalysis A: General, 2013, 467, 497-503.	2.2	15
133	Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde. Applied Catalysis B: Environmental, 2013, 138-139, 381-390.	10.8	82
134	Coassembly of Block Copolymer and Randomly Methylated β-Cyclodextrin: From Swollen Micelles to Mesoporous Alumina with Tunable Pore Size. Macromolecules, 2013, 46, 5672-5683.	2.2	26
135	Efficient Ruthenium Nanocatalysts in Liquid–Liquid Biphasic Hydrogenation Catalysis: Towards a Supramolecular Control through a Sulfonated Diphosphine–Cyclodextrin Smart Combination. ChemCatChem, 2013, 5, 3802-3811.	1.8	29
136	Hydroxypropyl-β-cyclodextrin as a versatile additive for the formation of metastable tetragonal zirconia exhibiting high thermal stability. CrystEngComm, 2013, 15, 2076-2083.	1.3	20
137	Thermoresponsive Hydrogels in Catalysis. ACS Catalysis, 2013, 3, 1006-1010.	5.5	87
138	Pickering Emulsions Based on Supramolecular Hydrogels: Application to Higher Olefins' Hydroformylation. ACS Catalysis, 2013, 3, 1618-1621.	5.5	64
139	A cyclodextrin dimer as a supramolecular reaction platform for aqueous organometallic catalysis. Chemical Communications, 2013, 49, 6989.	2.2	28
140	Methylated β yclodextrin apped Ruthenium Nanoparticles: Synthesis Strategies, Characterization, and Application in Hydrogenation Reactions. ChemCatChem, 2013, 5, 1497-1503.	1.8	36
141	Hydroformylation in Aqueous Biphasic Media Assisted by Molecular Receptors. Topics in Current Chemistry, 2013, 342, 49-78.	4.0	8
142	The Role of Metals and Ligands in Organic Hydroformylation. Topics in Current Chemistry, 2013, 342, 1-47.	4.0	22
143	Rhodiumâ€Catalyzed Homogeneous and Aqueous Biphasic Hydroformylation of the Acrolein Acetal 2â€Vinylâ€5â€Methylâ€1,3â€Dioxane. ChemCatChem, 2013, 5, 1562-1569.	1.8	9
144	Diametrically Opposed Carbenes on an αâ€Cyclodextrin: Synthesis, Characterization of Organometallic Complexes and Suzuki–Miyaura Coupling in Ethanol and in Water. European Journal of Organic Chemistry, 2013, 2013, 3691-3699.	1.2	40

#	Article	IF	CITATIONS
145	About the Use of Rhodium Nanoparticles in Hydrogenation and Hydroformylation Reactions. Current Organic Chemistry, 2013, 17, 364-399.	0.9	47
146	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins: Current Scope and Future Developments. , 2013, , 36-63.		2
147	Lower- and upper-rim-modified derivatives of 1,3,5-triaza-7-phosphaadamantane: Coordination chemistry and applications in catalytic reactions in water. Pure and Applied Chemistry, 2012, 85, 385-396.	0.9	23
148	Novel Strategy for the Bis-Butenolide Synthesis via Ring-Closing Metathesis. Synthesis, 2012, 44, 137-143.	1.2	6
149	Cyclodextrins for Remediation Technologies. Environmental Chemistry for A Sustainable World, 2012, , 47-81.	0.3	12
150	Aqueous biphasic hydrogenation of benzene catalyzed by ruthenium complex of trisulfonated tris(biphenyl)phosphine. Catalysis Science and Technology, 2012, 2, 2273.	2.1	4
151	Remediation technologies using cyclodextrins: an overview. Environmental Chemistry Letters, 2012, 10, 225-237.	8.3	116
152	Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis. Catalysis Communications, 2012, 29, 77-81.	1.6	10
153	Aqueous biphasic hydroformylation in the presence of cyclodextrins mixtures: evidence of a positive synergistic effect. Dalton Transactions, 2012, 41, 8643.	1.6	24
154	Cyclodextrins as growth controlling agents for enhancing the catalytic activity of PVP-stabilized Ru(0) nanoparticles. Chemical Communications, 2012, 48, 3451.	2.2	35
155	Cyclodextrin–phosphane possessing a guest-tunable conformation for aqueous rhodium-catalyzed hydroformylation. Chemical Communications, 2012, 48, 753-755.	2.2	47
156	Cooperativity in Aqueous Organometallic Catalysis: Contribution of Cyclodextrin-Substituted Polymers. ACS Catalysis, 2012, 2, 1417-1420.	5.5	42
157	Rhodiumâ€catalyzed hydroformylation of unsaturated fatty esters in aqueous media assisted by activated carbon. European Journal of Lipid Science and Technology, 2012, 114, 1439-1446.	1.0	29
158	Carboxylated polymers functionalized by cyclodextrins for the stabilization of highly efficient rhodium(0) nanoparticles in aqueous phase catalytic hydrogenation. Dalton Transactions, 2012, 41, 13359.	1.6	23
159	Characterization of β-cyclodextrins and isosorbide diesters self-assemblies: Towards new renewable surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 380-387.	2.3	5
160	Phosphane-Based Cyclodextrins as Mass Transfer Agents and Ligands for Aqueous Organometallic Catalysis. Molecules, 2012, 17, 13062-13072.	1.7	21
161	Impact of cyclodextrins on the behavior of amphiphilic ligands in aqueous organometallic catalysis. Beilstein Journal of Organic Chemistry, 2012, 8, 1479-1484.	1.3	19
162	Functionalized Cyclodextrins as First and Second Coordination Sphere Ligands for Aqueous Organometallic Catalysis. European Journal of Inorganic Chemistry, 2012, 2012, 1571-1578.	1.0	44

#	Article	IF	CITATIONS
163	Cyclodextrin/Amphiphilic Phosphane Mixed Systems and their Applications in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 1337-1346.	2.1	30
164	Nanoparticleâ€Based Catalysis using Supramolecular Hydrogels. Advanced Synthesis and Catalysis, 2012, 354, 1269-1272.	2.1	40
165	Alkyl sulfonated diphosphines-stabilized ruthenium nanoparticles as efficient nanocatalysts in hydrogenation reactions in biphasic media. Catalysis Today, 2012, 183, 34-41.	2.2	38
166	Biphasic hydroformylation of 1-octene catalyzed by cobalt complex of trisulfonated tris(biphenyl)phosphine. Applied Catalysis A: General, 2012, 413-414, 273-279.	2.2	21
167	Cyclodextrins adsorbed onto activated carbons: Preparation, characterization, and effect on the dispersibility of the particles in water. Journal of Colloid and Interface Science, 2012, 371, 89-100.	5.0	11
168	Supramolecularly controlled surface activity of an amphiphilic ligand. Application to aqueous biphasic hydroformylation of higher olefins. Catalysis Science and Technology, 2011, 1, 1347.	2.1	31
169	An N-heterocyclic carbene ligand based on a β-cyclodextrin–imidazolium salt: synthesis, characterization of organometallic complexes and Suzuki coupling. New Journal of Chemistry, 2011, 35, 2061.	1.4	53
170	β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer–Tropsch synthesis. Chemical Communications, 2011, 47, 10767.	2.2	36
171	Scope and limitation of activated carbons in aqueous organometallic catalysis. Journal of Catalysis, 2011, 278, 208-218.	3.1	12
172	Using click chemistry to access mono- and ditopic β-cyclodextrin hosts substituted by chiral amino acids. Carbohydrate Research, 2011, 346, 210-218.	1.1	18
173	Interaction of waterâ€soluble triphenylphosphines with βâ€eyclodextrin: a quantum chemistry study. Journal of Physical Organic Chemistry, 2011, 24, 1129-1135.	0.9	6
174	Synthesis, Rhodium Complexes and Catalytic Applications of a New Waterâ€Soluble Triphenylphosphaneâ€Modified βâ€Cyclodextrin. Advanced Synthesis and Catalysis, 2011, 353, 1325-1334.	2.1	32
175	Unusual Inversion Phenomenon of β yclodextrin Dimers in Water. Chemistry - A European Journal, 2011, 17, 3949-3955.	1.7	37
176	Inside Cover: Unusual Inversion Phenomenon of β-Cyclodextrin Dimers in Water (Chem. Eur. J. 14/2011). Chemistry - A European Journal, 2011, 17, 3794-3794.	1.7	0
177	An ordered hydrophobic P6mm mesoporous carbon with graphitic pore walls and its application in aqueous catalysis. Carbon, 2011, 49, 1290-1298.	5.4	41
178	Chemically modified cyclodextrins as supramolecular tools to generate carbon-supported ruthenium nanoparticles: An application towards gas phase hydrogenation. Applied Catalysis A: General, 2011, 391, 334-341.	2.2	24
179	Cyclodextrins and their applications in aqueous-phase metal-catalyzed reactions. Comptes Rendus Chimie, 2011, 14, 149-166.	0.2	92
180	Hydrogenation of cinnamaldehyde with heterogeneous catalyst in the presence of cyclodextrins. Arkivoc, 2011, 2011, 406-415.	0.3	7

#	Article	IF	CITATIONS
181	Editorial [Hot topic: Cyclodextrin and Catalysis (Guest Editor: Eric Monflier)]. Current Organic Chemistry, 2010, 14, 1265-1265.	0.9	5
182	Properties and Catalytic Activities of New Easilyâ€Made Amphiphilic Phosphanes for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1193-1203.	2.1	27
183	Ditopic Cyclodextrinâ€Based Receptors: New Perspectives in Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1467-1475.	2.1	12
184	Activated Carbon as a Massâ€Transfer Additive in Aqueous Organometallic Catalysis. Chemistry - A European Journal, 2010, 16, 6138-6141.	1.7	18
185	New Phosphane Based on a β yclodextrin, Exhibiting a Solventâ€Tunable Conformation, and its Catalytic Properties. Chemistry - A European Journal, 2010, 16, 10195-10201.	1.7	29
186	β-Cyclodextrins modified by alkyl and poly(ethylene oxide) chains: A novel class of mass transfer additives for aqueous organometallic catalysis. Journal of Molecular Catalysis A, 2010, 318, 8-14.	4.8	23
187	â€~Click' synthesis of ferrocenyl-, biferrocenyl-, and cobalticenyl-triazolyl-β-cyclodextrins. Tetrahedron Letters, 2010, 51, 4617-4619.	0.7	16
188	Cyclodextrins as Mass Transfer Additives in Aqueous Organometallic Catalysis. Current Organic Chemistry, 2010, 14, 1296-1307.	0.9	41
189	Cyclodextrin-Based SupramolecularP,NBidentate Ligands and their Platinum and Rhodium Complexes. Organometallics, 2010, 29, 6668-6674.	1.1	22
190	Noncovalent functionalization of multiwall carbon nanotubes by methylated-β-cyclodextrins modified by a triazole group. Chemical Communications, 2010, 46, 7382.	2.2	21
191	Amphiphilic photo-isomerisable phosphanes for aqueous organometallic catalysis. Chemical Communications, 2010, 46, 7813.	2.2	23
192	New supramolecular amphiphiles based on renewable resources. Green Chemistry, 2010, 12, 772.	4.6	14
193	Aqueous hydroformylation reaction mediated by randomly methylated β-cyclodextrin: How substitution degree influences catalytic activity and selectivity. Journal of Molecular Catalysis A, 2009, 303, 72-77.	4.8	37
194	Synthesis of a halo-methylphenylene periphery-functionalized triazine-based dendritic molecule with a 3,3′-dimethyl-biphenyl linker using tris(halo-methylphenylene)triazines as building blocks. Tetrahedron Letters, 2009, 50, 1851-1854.	0.7	7
195	Complexation of phosphine ligands with peracetylated-β-cyclodextrin in supercritical carbon dioxide: Effect of temperature and cosolvent on the equilibrium constant. Journal of Supercritical Fluids, 2009, 49, 154-160.	1.6	9
196	Aqueous rhodium-catalyzed hydroformylation of 1-decene in the presence of randomly methylated β-cyclodextrin and 1,3,5-triaza-7-phosphaadamantane derivatives. Applied Catalysis A: General, 2009, 362, 62-66.	2.2	44
197	Catalytically active nanoparticles stabilized by host–guest inclusion complexes in water. Chemical Communications, 2009, , 1228.	2.2	59
198	Cobalt catalyzed hydroformylation of higher olefins in the presence of chemically modified cyclodextrins. Catalysis Communications, 2009, 10, 1808-1812.	1.6	25

#	Article	IF	CITATIONS
199	Chemically Modified Cyclodextrins: An Attractive Class of Supramolecular Hosts for the Development of Aqueous Biphasic Catalytic Processes. Sustainability, 2009, 1, 924-945.	1.6	55
200	Carbon‣upported Ruthenium Nanoparticles Stabilized by Methylated Cyclodextrins: A New Family of Heterogeneous Catalysts for the Gasâ€Phase Hydrogenation of Arenes. Chemistry - A European Journal, 2008, 14, 8090-8093.	1.7	34
201	A Propertyâ€Matched Waterâ€Soluble Analogue of the Benchmark Ligand PPh ₃ . ChemSusChem, 2008, 1, 631-636.	3.6	19
202	Hydroformylation of 1â€Octene in Supercritical Carbon Dioxide with Alkyl Pâ€Donor Ligands on Rhodium Using a Peracetylated βâ€Cyclodextrin as a Solubiliser. European Journal of Inorganic Chemistry, 2008, 2008, 2659-2663.	1.0	15
203	Easily Accessible Mono―and Polytopic Âβ yclodextrin Hosts by Click Chemistry. European Journal of Organic Chemistry, 2008, 2008, 5723-5730.	1.2	35
204	Biphasic Aqueous Organometallic Catalysis Promoted by Cyclodextrins: How to Design the Waterâ€6oluble Phenylphosphane to Avoid Interaction with Cyclodextrin. Advanced Synthesis and Catalysis, 2008, 350, 609-618.	2.1	36
205	Hydroformylation of 1-octene in supercritical carbon dioxide: Can alkylation of arylphosphines with tertbutyl groups lead to soluble and active catalytic systems?. Journal of Supercritical Fluids, 2008, 46, 63-70.	1.6	15
206	Click chemistry as an efficient tool to access \hat{l}^2 -cyclodextrin dimers. Tetrahedron, 2008, 64, 7159-7163.	1.0	44
207	Fine tuning of sulfoalkylated cyclodextrin structures to improve their mass-transfer properties in an aqueous biphasic hydroformylation reaction. Journal of Molecular Catalysis A, 2008, 286, 11-20.	4.8	26
208	Chemically modified cyclodextrins adsorbed on Pd/C particles: New opportunities to generate highly chemo- and stereoselective catalysts for Heck reaction. Catalysis Communications, 2008, 9, 1346-1351.	1.6	46
209	Rhodium-Catalyzed Hydroformylation Promoted by Modified Cyclodextrins:Current Scope and Future Developments. Current Organic Synthesis, 2008, 5, 162-172.	0.7	50
210	Inclusion complexes of triphenylphosphine derivatives and peracetylated-Î ² -cyclodextrin in supercritical carbon dioxide. Journal of Physics: Conference Series, 2008, 121, 022022.	0.3	0
211	Organometallic Inclusion and Intercalation Chemistry. , 2007, , 781-835.		1
212	Methylated cyclodextrins: an efficient protective agent in water for zerovalent ruthenium nanoparticles and a supramolecular shuttle in alkene and arene hydrogenation reactions. Dalton Transactions, 2007, , 5714.	1.6	65
213	Complexation of Phosphine Ligands with Peracetylated β-Cyclodextrin in Supercritical Carbon Dioxide:Â Spectroscopic Determination of Equilibrium Constants. Journal of Physical Chemistry B, 2007, 111, 2573-2578.	1.2	28
214	Self-Assembled Supramolecular Bidentate Ligands for Aqueous Organometallic Catalysis. Angewandte Chemie - International Edition, 2007, 46, 3040-3042.	7.2	53
215	Solubilisation of chlorinated solvents by cyclodextrin derivativesA study by static headspace gas chromatography and molecular modelling. Journal of Hazardous Materials, 2007, 141, 92-97.	6.5	42
216	Biphasic aqueous organometallic catalysis promoted by cyclodextrins: Can surface tension measurements explain the efficiency of chemically modified cyclodextrins?. Journal of Colloid and Interface Science, 2007, 307, 481-487.	5.0	77

#	Article	IF	CITATIONS
217	A versatile liposome/cyclodextrin supramolecular carrier for drug delivery through the blood-brain barrier. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 57, 567-572.	1.6	12
218	Supramolecular shuttle and protective agent: a multiple role of methylated cyclodextrins in the chemoselective hydrogenation of benzene derivatives with ruthenium nanoparticles. Chemical Communications, 2006, , 296-298.	2.2	84
219	Hydroformylation of 1-decene in aqueous medium catalysed by rhodium–alkyl sulfonated diphosphines system in the presence of methylated cyclodextrins. How the flexibility of the diphosphine backbone influences the regioselectivity. New Journal of Chemistry, 2006, 30, 377.	1.4	37
220	Cyclodextrins as Supramolecular Hosts for Organometallic Complexes. Chemical Reviews, 2006, 106, 767-781.	23.0	394
221	Cyclodextrin Catalysis. , 2006, , 93-105.		11
222	Unexpected Multifunctional Effects of Methylated Cyclodextrins in a Palladium Charcoal-Catalyzed Suzukiâ^'Miyaura Reaction. Organic Letters, 2006, 8, 4823-4826.	2.4	58
223	Methylated β-cyclodextrin as P-gp modulators for deliverance of doxorubicin across an in vitro model of blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2154-2157.	1.0	48
224	Host–guest inclusion complexes between peracetylated β-cyclodextrin and diphenyl(4-phenylphenyl)phosphine: Computational studies. Computational and Theoretical Chemistry, 2006, 777, 99-106.	1.5	27
225	Eco-efficient Catalytic Hydrodechlorination of Carbon Tetrachloride in Aqueous Cyclodextrin Solutions. Catalysis Letters, 2006, 108, 209-214.	1.4	13
226	Peracetylated β-cyclodextrin as solubilizer of arylphosphines in supercritical carbon dioxide. Journal of Supercritical Fluids, 2006, 36, 173-181.	1.6	23
227	How cyclodextrins can mask their toxic effect on the blood–brain barrier. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1784-1787.	1.0	11
228	Supramolecular Trapping of Phosphanes by Cyclodextrins: A General Approach to Generate Phosphane Coordinatively Unsaturated Organometallic Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 1611-1619.	1.0	14
229	Heptakis(2,3-di-O-methyl-6-O-sulfopropyl)-β-cyclodextrin: A Genuine Supramolecular Carrier for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2006, 348, 379-386.	2.1	38
230	Water-Soluble Triphenylphosphane-3,3′,3′′-tricarboxylate (m-TPPTC) Ligand and Methylated Cyclodextrins: A New Combination for Biphasic Rhodium-Catalyzed Hydroformylation of Higher Olefins. Advanced Synthesis and Catalysis, 2006, 348, 1547-1552.	2.1	30
231	Substrate-selective aqueous organometallic catalysis. How small water-soluble organic molecules enhance the supramolecular discrimination. Tetrahedron, 2005, 61, 4811-4817.	1.0	21
232	Adamantoylated monosaccharides: new compounds for modification of the properties of cyclodextrin-containing materials. Carbohydrate Research, 2005, 340, 1461-1468.	1.1	10
233	Two-Phase Hydroformylation of Higher Olefins Using Randomly Methylated ?-Cyclodextrin as Mass Transfer Promoter: A Smart Solution for Preserving the Intrinsic Properties of the Rhodium/Trisulfonated Triphenylphosphine Catalytic System. Advanced Synthesis and Catalysis, 2005, 347, 55-59.	2.1	41
234	Sulfobutyl Ether-β-Cyclodextrins: Promising Supramolecular Carriers for Aqueous Organometallic Catalysis. Advanced Synthesis and Catalysis, 2005, 347, 1301-1307.	2.1	35

#	Article	IF	CITATIONS
235	Rhodium Complexes Non-Covalently Bound to Cyclodextrins: Novel Water-Soluble Supramolecular Catalysts for the Biphasic Hydroformylation of Higher Olefins. Chemistry - A European Journal, 2005, 11, 6228-6236.	1.7	31
236	Complexation of Monosulfonated Triphenylphosphine with Chemically Modified β-Cyclodextrins: Effect of Substituents on the Stability of Inclusion Complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 51, 79-85.	1.6	17
237	Evidence of a self-inclusion phenomenon for a new class of mono-substituted alkylammonium-β-cyclodextrins. Organic and Biomolecular Chemistry, 2005, 3, 1129-1133.	1.5	17
238	Sulfonated Xantphos Ligand and Methylated Cyclodextrin:Â A Winning Combination for Rhodium-Catalyzed Hydroformylation of Higher Olefins in Aqueous Medium. Organometallics, 2005, 24, 2070-2075.	1.1	66
239	Behavior of α-, β-, and γ-Cyclodextrins and Their Derivatives on an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 745-751.	1.3	93
240	Substrate-selective aqueous organometallic catalysis. How size and chemical modification of cyclodextrin influence the substrate selectivity. Tetrahedron, 2004, 60, 6487-6493.	1.0	39
241	Cleavage of water-insoluble alkylallylcarbonates catalysed by a palladium/TPPTS/cyclodextrin system: effect of phosphine/cyclodextrin interactions on the reaction rate. Journal of Molecular Catalysis A, 2004, 215, 23-32.	4.8	35
242	Cyclodextrins or Calixarenes: What is the Best Mass Transfer Promoter for Suzuki Cross-Coupling Reactions in Water?. Advanced Synthesis and Catalysis, 2004, 346, 83-89.	2.1	53
243	High-Pressure31P{1H}â€NMR Studies of RhH(CO)(TPPTS)3 in the Presence of Methylated Cyclodextrins: New Light on Rhodium-Catalyzed Hydroformylation Reaction Assisted by Cyclodextrins. Advanced Synthesis and Catalysis, 2004, 346, 425-431.	2.1	59
244	Molecular Recognition Between a Water-Soluble Organometallic Complex and a ?-Cyclodextrin: First Example of Second-Sphere Coordination Adducts Possessing a Catalytic Activity. Advanced Synthesis and Catalysis, 2004, 346, 1449-1456.	2.1	33
245	Cyclodextrin silica-based materials: advanced characterizations and study of their complexing behavior by diffuse reflectance UV–Vis spectroscopy. Microporous and Mesoporous Materials, 2004, 75, 261-272.	2.2	42
246	Effects of Î ³ - and Hydroxypropyl-Î ³ -cyclodextrins on the Transport of Doxorubicin across an in Vitro Model of Blood-Brain Barrier. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 1115-1120.	1.3	48
247	Methylated-β-cyclodextrins: useful discriminating tools for substrate-selective reactions in aqueous organometallic catalysis. Catalysis Communications, 2004, 5, 265-270.	1.6	21
248	Synthesis and Amphiphilic Behavior ofN,Nâ€Bisâ€glucosylâ€1,5â€benzodiazepinâ€2,4â€dione. Journal of Carbohydrate Chemistry, 2004, 23, 389-401.	0.4	8
249	Unexpected Effect of Cyclodextrins on Water-Soluble Rhodium Complexes. European Journal of Inorganic Chemistry, 2003, 2003, 595-599.	1.0	27
250	Complexation of monosulfonated triphenylphosphine oxides with β-cyclodextrin: spectroscopic study and consequence on the behaviour of cyclodextrins in aqueous-phase organometallic catalysis. New Journal of Chemistry, 2003, 27, 1603-1608.	1.4	12
251	Phosphocontaining Cyclodextrins as a New Class of Supramolecular Structures. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1489-1492.	0.8	0
252	One and Two-dimensional NMR Investigations of the Inclusion of the Monosulfonated Triphenylphosphine in the β-cyclodextrin. Supramolecular Chemistry, 2002, 14, 11-20.	1.5	33

#	Article	IF	CITATIONS
253	Cyclodextrins as inverse phase transfer catalysts for the biphasic catalytic hydrogenation of aldehydes: a green and easy alternative to conventional mass transfer promoters. Green Chemistry, 2002, 4, 188-193.	4.6	53
254	Perfluorooctyl substituted triphenylphosphites as ligands for hydroformylation of higher olefins in fluorocarbon/hydrocarbon biphasic medium. Comptes Rendus Chimie, 2002, 5, 417-424.	0.2	13
255	Hydroformylation of higher olefins by rhodium/tris-((1H,1H,2H,2H-perfluorodecyl)phenyl)phosphites complexes in a fluorocarbon/hydrocarbon biphasic medium: effects of fluorinated groups on the activity and stability of the catalytic system. Tetrahedron, 2002, 58, 3877-3888.	1.0	40
256	Thermodynamic insight into the origin of the inclusion of monosulfonated isomers of triphenylphosphine into the β-cyclodextrin cavity. Carbohydrate Research, 2002, 337, 281-287.	1.1	39
257	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2002, 42, 269-274.	1.6	13
258	Scanning tunneling microscopy investigation of an inclusion complex between the β-cyclodextrin and the sodium salt of the trisulfonated triphenylphosphine. Surface Science, 2001, 470, 275-283.	0.8	17
259	Convenient synthesis of new amphiphilic triphenylphosphine analogues for aqueous biphasic catalysis. Tetrahedron Letters, 2001, 42, 8837-8840.	0.7	24
260	Rhodium catalyzed hydroformylation of water insoluble olefins in the presence of chemically modified β-cyclodextrins: evidence for ligand-cyclodextrin interactions and effect of various parameters on the activity and the aldehydes selectivity. Journal of Molecular Catalysis A, 2001, 176, 105-116.	4.8	70
261	Substrate-selective catalysis in an aqueous biphasic system with per(2,6-di-O-methyl)-β-cyclodextrin. Catalysis Today, 2001, 66, 355-361.	2.2	30
262	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2000, 38, 361-379.	1.6	35
263	Unexpected synthesis of a new highly fluorocarbon soluble phosphite for biphasic catalysis. Tetrahedron Letters, 1999, 40, 3885-3888.	0.7	29
264	A convenient synthesis of phenylpropanoic acids: the palladium catalyzed hydrocarboxylation of styrene derivatives in a two-phase system. Journal of Molecular Catalysis A, 1999, 138, 53-57.	4.8	33
265	Advances in transition-metal catalyzed hydroxycarbonylation reactions in aqueous-organic two-phase system. Journal of Molecular Catalysis A, 1999, 143, 11-22.	4.8	45
266	Palladium catalyzed hydroxycarbonylation of olefins in biphasic system: beneficial effect of alkali metal salt and protective-colloid agents on the stability of the catalytic system. Journal of Molecular Catalysis A, 1999, 143, 23-30.	4.8	45
267	Chemically modified β-cyclodextrins in biphasic catalysis: a fruitful contribution of the host–guest chemistry to the transition-metal catalyzed reactions. Catalysis Today, 1999, 48, 245-253.	2.2	54
268	Comparative Raman spectroscopy study of sulfonate-substituted triphenylphosphines. Vibrational Spectroscopy, 1999, 20, 165-172.	1.2	17
269	Chemically Modifiedβ-Cyclodextrins as Supramolecular Carriers in the Biphasic Palladium-Catalyzed Cleavage of Allylic Carbonates: Activity Enhancement and Substrate-Selective Catalysis. European Journal of Organic Chemistry, 1999, 1999, 3127-3129.	1.2	31
270	First evidence of molecular recognition between cyclodextrins and a water-soluble ligand used in aqueous phase organometallic catalysis. New Journal of Chemistry, 1999, 23, 469-472.	1.4	47

#	Article	IF	CITATIONS
271	Title is missing!. Catalysis Letters, 1998, 50, 115-115.	1.4	3
272	Easy two-step synthesis of new tris(perfluoroalkylphenyl)phosphites. Tetrahedron Letters, 1998, 39, 9411-9414.	0.7	32
273	Isomerization of olefins in a two-phase system by homogeneous water-soluble nickel complexes. Journal of Organometallic Chemistry, 1998, 553, 469-471.	0.8	23
274	Chemically modified Î ² -cyclodextrins: Efficient supramolecular carriers for the biphasic hydrogenation of water-insoluble aldehydes. Tetrahedron Letters, 1998, 39, 2959-2960.	0.7	41
275	An unusual enhancement of catalytic activity in biphasic catalysis: The rhodium catalyzed hydroformylation of acrylic esters. Journal of Molecular Catalysis A, 1998, 129, 35-40.	4.8	33
276	Expanded Scope of Supported Aqueous Phase Catalysis: Efficient Rhodium-Catalyzed Hydroformylation of α,β-Unsaturated Esters. Journal of Catalysis, 1996, 162, 339-348.	3.1	49
277	Wacker oxidation of various olefins in the presence of per(2,6-di-O-methyl)-β-cyclodextrin: mechanistic investigations of a multistep catalysis in a solvent-free two-phase system. Journal of Molecular Catalysis A, 1996, 109, 27-35.	4.8	58
278	Erhöhung der KatalyseaktivitÃæbei der Hydroformylierung von Acrylsäremethylester durch Verwendung von Zweiphasen―und "Supportedâ€Aqueousâ€Phaseâ€â€£ystemen. Angewandte Chemie, 199 1608-1610.	95 1. ₿07,	17
279	Molekulare Erkennung zwischen chemisch modifiziertem <i>β</i> yclodextrin und 1â€Decen: Zweiphasenâ€Hydroformylierung von wasserunlöslichen Olefinen. Angewandte Chemie, 1995, 107, 2450-2452.	1.6	37
280	Enhancement of Catalytic Activity for Hydroformylation of Methyl Acrylate by Using Biphasic and"Supported Aqueous Phase―Systems. Angewandte Chemie International Edition in English, 1995, 34, 1474-1476.	4.4	79
281	Molecular Recognition between Chemically Modifiedβ-Cyclodextrin and Dec-1-ene: New Prospects for Biphasic Hydroformylation of Water-Insoluble Olefins. Angewandte Chemie International Edition in English, 1995, 34, 2269-2271.	4.4	123
282	A convenient electrosynthesis of new complexes [Sn{Co(CO)3PR3}4] and their spectroscopic characterization. Journal of Organometallic Chemistry, 1995, 486, 123-127.	0.8	1
283	Palladium catalyzed telomerization of butadiene with water in a two phase system: drastic effect of the amine structure on the rate and selectivity. Journal of Molecular Catalysis A, 1995, 97, 29-33.	4.8	49
284	Highly efficient telomerization of butadiene into octadienol in a micellar system: a judicious choice of the phosphine/surfactant combination. Applied Catalysis A: General, 1995, 131, 167-178.	2.2	38
285	A new, highly selective, water-soluble rhodium catalyst for methyl acrylate hydroformylation. Journal of Organometallic Chemistry, 1995, 505, 11-16.	0.8	61
286	A very useful and efficient Wacker oxidation of higher α-olefins in the presence of per(2,6-di-O-methyl)-β-cyclodextrin. Tetrahedron Letters, 1995, 36, 387-388.	0.7	42
287	A further breakthrough in biphasic, rhodium-catalyzed hydroformylation: the use of Per(2,6-di-O-methyl)-l ² -cyclodextrin as inverse phase transfer catalyst. Tetrahedron Letters, 1995, 36, 9481-9484.	0.7	97
288	Solvent free telomerization of butadiene with water into octadienols in the presence of nonionic surfactant: efficient micellar catalysis. Catalysis Letters, 1995, 34, 201-212.	1.4	27

#	Article	IF	CITATIONS
289	Wacker Oxidation of 1-Decene to 2-Decanone in the Presence of a Chemically Modified Cyclodextrin System: A Happy Union of Host–Guest Chemistry and Homogeneous Catalysis. Angewandte Chemie International Edition in English, 1994, 33, 2100-2102.	4.4	97
290	Double vs. mono carbonylation of phenethyl bromide catalyzed by cobalt complexes: Effect of hydrophobic or water-soluble phosphines on the rate and selectivity of the reaction. Journal of Molecular Catalysis, 1994, 88, 295-300.	1.2	14
291	A convenient synthesis of benzylpyruvic acid: the double carbonylation of phenethyl bromide. Applied Catalysis A: General, 1993, 102, 53-67.	2.2	11
292	Direct carbonylation of polychloroalkanes into acid chlorides using metallic salts ternary systems: an example of multistep catalysis. Journal of the Chemical Society Chemical Communications, 1992, , 439-441.	2.0	0
293	Electrochemical synthesis and catalytic applications of tin—cobalt carbonyl complexes. Journal of Molecular Catalysis, 1992, 74, 465-479.	1.2	5
294	Direct synthesis of lactones by double carbonylation of (2-bromoethyl)benzene catalyzed by Sn(Co(CO)4)4. Tetrahedron Letters, 1991, 32, 4703-4704.	0.7	9
295	Aqueous zirconiumâ€MOF syntheses assisted by α yclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	1.0	3