## Roney L Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139568/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                              | IF                                       | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|
| 1  | Computational study of planar extrudate swell flows with a viscous liquidâ€gas interface. AICHE<br>Journal, 2022, 68, e17503.<br>Development of poplinger Reviolds average turbulent < mml:math                                                                                                                                                                                      | 1.8                                      | 2              |
| 2  | xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e2346"<br>altimg="si77.svg"> < mml:mrow> < mml:mi>l <sup>e</sup> < mml:mo linebreak="goodbreak"<br>linebreakstyle="after"> a^^ < /mml:mo> < mml:mover<br>accent="true"> < mml:mrow> < mml:mi>l <sup>3</sup> < /mml:mi> < /mml:mrow> < mml:mrow> < mml:mo> <td>1.0<br/>mrow&gt;<td>3<br/>nl:mover&gt;</td></td> | 1.0<br>mrow> <td>3<br/>nl:mover&gt;</td> | 3<br>nl:mover> |
| 3  | models. Mechanics Research Communications, 2022, 120, 103853.<br>Numerical investigation of shear-thinning and viscoelastic binary droplet collision. Journal of<br>Non-Newtonian Fluid Mechanics, 2022, 302, 104750.                                                                                                                                                                | 1.0                                      | 8              |
| 4  | Pre-processing DNS data to improve statistical convergence and accuracy of mean velocity fields in invariant data-driven turbulence models. Theoretical and Computational Fluid Dynamics, 2022, 36, 435-463.                                                                                                                                                                         | 0.9                                      | 4              |
| 5  | A non-isothermal approach to evaluate the impact of the cooling stage on the startup flow of waxy<br>crude oils. Journal of Non-Newtonian Fluid Mechanics, 2022, 304, 104793.                                                                                                                                                                                                        | 1.0                                      | 2              |
| 6  | Recent developments on yield stress materials. , 2022, 2, 100021.                                                                                                                                                                                                                                                                                                                    |                                          | 0              |
| 7  | Relations between solutions of the Zorawski condition and motions with constant stretch history.<br>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .                                                                                                                                                                                             | 0.8                                      | 0              |
| 8  | Conditioning and accurate solutions of Reynolds average Navier–Stokes equations with data-driven turbulence closures. Journal of Fluid Mechanics, 2021, 915, .                                                                                                                                                                                                                       | 1.4                                      | 30             |
| 9  | Nonlinear subgrid-scale models employing the non-persistence-of-straining tensor. Mechanics<br>Research Communications, 2021, 113, 103671.                                                                                                                                                                                                                                           | 1.0                                      | 0              |
| 10 | Reynolds and Weissenberg numbers in viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics,<br>2021, 292, 104550.                                                                                                                                                                                                                                                              | 1.0                                      | 7              |
| 11 | Error propagation and conditioning analysis of DNS data of turbulent viscoelastic channel flows.<br>Journal of Non-Newtonian Fluid Mechanics, 2021, 296, 104632.                                                                                                                                                                                                                     | 1.0                                      | 1              |
| 12 | Rheological effects on the acidizing process in carbonate reservoirs. Journal of Petroleum Science and Engineering, 2021, 207, 109122.                                                                                                                                                                                                                                               | 2.1                                      | 18             |
| 13 | Analysis of the flow between parallel coaxial discs with relative axial motion and rotation. Journal of Non-Newtonian Fluid Mechanics, 2020, 285, 104404.                                                                                                                                                                                                                            | 1.0                                      | 1              |
| 14 | Is the von Mises criterion generally applicable to soft solids?. Soft Matter, 2020, 16, 7576-7584.                                                                                                                                                                                                                                                                                   | 1.2                                      | 15             |
| 15 | Persistence–of–straining and polymer alignment in viscoelastic turbulence. Applications in<br>Engineering Science, 2020, 4, 100026.                                                                                                                                                                                                                                                  | 0.5                                      | 0              |
| 16 | The eagle and the rat: Non–equilibrium dynamics in time-dependent materials. Journal of<br>Non-Newtonian Fluid Mechanics, 2020, 281, 104313.                                                                                                                                                                                                                                         | 1.0                                      | 2              |
| 17 | Rheological material functions at yielding. Journal of Rheology, 2020, 64, 615-624.                                                                                                                                                                                                                                                                                                  | 1.3                                      | 19             |
| 18 | Gravitational Effects in the Collision of Elasto-Viscoplastic Drops on a Vertical Plane. Fluids, 2020, 5, 61.                                                                                                                                                                                                                                                                        | 0.8                                      | 2              |

RONEY L THOMPSON

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The use of a general convected time derivative to compute the Reynolds stress tensor for a compressible turbulent flow. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1. | 0.8 | 2         |
| 20 | Normal and oblique drop impact of yield stress fluids with thixotropic effects. Journal of Fluid<br>Mechanics, 2019, 876, 642-679.                                                                            | 1.4 | 13        |
| 21 | The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling. Computers and Fluids, 2019, 192, 104258.                                             | 1.3 | 39        |
| 22 | Influence of Adding Asphaltenes and Gas Condensate on CO <sub>2</sub> Hydrate Formation in<br>Water–CO <sub>2</sub> –Oil Systems. Energy & Fuels, 2019, 33, 7138-7146.                                        | 2.5 | 25        |
| 23 | Common features between the Newtonian laminar–turbulent transition and the viscoelastic<br>drag-reducing turbulence. Journal of Fluid Mechanics, 2019, 877, 405-428.                                          | 1.4 | 12        |
| 24 | A simple method to analyze materials under quasilinear large amplitude oscillatory shear flow<br>(QL-LAOS). Journal of Rheology, 2019, 63, 305-317.                                                           | 1.3 | 10        |
| 25 | Time-dependent yield stress materials. Current Opinion in Colloid and Interface Science, 2019, 43, 15-25.                                                                                                     | 3.4 | 42        |
| 26 | Impact of capillary drops of complex fluids on a solid surface. Physics of Fluids, 2019, 31, .                                                                                                                | 1.6 | 12        |
| 27 | Eigenvector perturbation methodology for uncertainty quantification of turbulence models.<br>Physical Review Fluids, 2019, 4, .                                                                               | 1.0 | 13        |
| 28 | Influence of the Plastic Number on the Evolution of a Yield Stress Material Subjected to a Dam Break.<br>Journal of Applied Fluid Mechanics, 2019, 12, 1967-1978.                                             | 0.4 | 2         |
| 29 | Analysis of CO <sub>2</sub> Hydrates in Crude Oils from a Rheological Point of View. Energy &<br>Fuels, 2018, 32, 2733-2741.                                                                                  | 2.5 | 21        |
| 30 | Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion. Physics of Fluids, 2018, 30, .                              | 1.6 | 14        |
| 31 | Emulsion effects on the yield stress of gelled waxy crude oils. Fuel, 2018, 222, 444-456.                                                                                                                     | 3.4 | 20        |
| 32 | The yield stress tensor. Journal of Non-Newtonian Fluid Mechanics, 2018, 261, 211-219.                                                                                                                        | 1.0 | 43        |
| 33 | Model analysis of the turbulent flows in a convergent–divergent channel and around a sphere.<br>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.                         | 0.8 | 0         |
| 34 | Constructing a thixotropy model from rheological experiments. Journal of Non-Newtonian Fluid Mechanics, 2018, 261, 1-8.                                                                                       | 1.0 | 22        |
| 35 | Friction Coefficients for Bingham and Power-Law Fluids in Abrupt Contractions and Expansions.<br>Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .                                        | 0.8 | 9         |
| 36 | The "avalanche effect―of an elasto-viscoplastic thixotropic material on an inclined plane. Journal of<br>Non-Newtonian Fluid Mechanics, 2017, 247, 165-177.                                                   | 1.0 | 17        |

Roney L Thompson

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | An experimental investigation on the Newtonian–Newtonian and viscoplastic–Newtonian<br>displacement in a capillary tube. Journal of Non-Newtonian Fluid Mechanics, 2017, 247, 207-220.                                            | 1.0 | 19        |
| 38 | Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows.<br>Physics of Fluids, 2017, 29, .                                                                                                 | 1.6 | 15        |
| 39 | Statistics and tensor analysis of polymer coil–stretch mechanism in turbulent drag reducing channel<br>flow. Journal of Fluid Mechanics, 2017, 824, 135-173.                                                                      | 1.4 | 29        |
| 40 | Active and hibernating turbulence in drag-reducing plane Couette flows. Physical Review Fluids, 2017, 2, .                                                                                                                        | 1.0 | 25        |
| 41 | Viscoplastic dimensionless numbers. Journal of Non-Newtonian Fluid Mechanics, 2016, 238, 57-64.                                                                                                                                   | 1.0 | 77        |
| 42 | Anisotropic Reynolds stress tensor representation in shear flows using DNS and experimental data.<br>Journal of Turbulence, 2016, 17, 602-632.                                                                                    | 0.5 | 9         |
| 43 | Transient motions of elasto-viscoplastic thixotropic materials subjected to an imposed stress field<br>and to stress-based free-surface boundary conditions. International Journal of Engineering Science,<br>2016, 109, 165-201. | 2.7 | 14        |
| 44 | An objective perspective for classic flow classification criteria. Comptes Rendus - Mecanique, 2016,<br>344, 52-59.                                                                                                               | 2.1 | 19        |
| 45 | A methodology to evaluate statistical errors in DNS data of plane channel flows. Computers and Fluids, 2016, 130, 1-7.                                                                                                            | 1.3 | 50        |
| 46 | On the Extension of Polymer Molecules in Turbulent Viscoelastic Flows: Statistical and Tensor<br>Investigation. ERCOFTAC Series, 2016, , 171-180.                                                                                 | 0.1 | 0         |
| 47 | On Objective and Non-objective Kinematic Flow Classification Criteria. ERCOFTAC Series, 2016, , 419-428.                                                                                                                          | 0.1 | Ο         |
| 48 | Immiscible liquid–liquid pressure-driven flow in capillary tubes: Experimental results and numerical comparison. Physics of Fluids, 2015, 27, .                                                                                   | 1.6 | 12        |
| 49 | Performance of an elasto-viscoplastic model in some benchmark problems. Mechanics of<br>Time-Dependent Materials, 2015, 19, 419-438.                                                                                              | 2.3 | 4         |
| 50 | Plane flow of thixotropic elasto-viscoplastic materials through a 1:4 sudden expansion. Journal of<br>Non-Newtonian Fluid Mechanics, 2015, 220, 162-174.                                                                          | 1.0 | 16        |
| 51 | Critical quantities on the yielding process of waxy crude oils. Rheologica Acta, 2015, 54, 479-499.                                                                                                                               | 1.1 | 44        |
| 52 | Model-based material functions for SAOS and LAOS analyses. Journal of Non-Newtonian Fluid<br>Mechanics, 2015, 215, 19-30.                                                                                                         | 1.0 | 33        |
| 53 | The quasilinear large-amplitude viscoelastic regime and its significance in the rheological characterization of soft matter. Journal of Rheology, 2014, 58, 537-561.                                                              | 1.3 | 48        |
| 54 | A note on some insights from decoupling the time derivative of an objective tensor. International<br>Journal of Engineering Science, 2014, 82, 22-27.                                                                             | 2.7 | 3         |

RONEY L THOMPSON

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A thermodynamic framework to model thixotropic materials. International Journal of Non-Linear<br>Mechanics, 2013, 55, 48-54.                                                                                | 1.4 | 17        |
| 56 | A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids. Rheologica Acta, 2013, 52, 673-694.                                                    | 1.1 | 121       |
| 57 | Viscoplastic–viscoplastic displacement in a plane channel with interfacial tension effects. Chemical<br>Engineering Science, 2013, 91, 54-64.                                                               | 1.9 | 18        |
| 58 | A critical overview of elasto-viscoplastic thixotropic modeling. Journal of Non-Newtonian Fluid<br>Mechanics, 2012, 187-188, 8-15.                                                                          | 1.0 | 103       |
| 59 | Experimental investigation of the enhanced oil recovery process using a polymeric solution. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2012, 34, 285-293.                     | 0.8 | 7         |
| 60 | Motion of a power-law long drop in a capillary tube filled by a Newtonian fluid. Chemical Engineering<br>Science, 2012, 72, 126-141.                                                                        | 1.9 | 9         |
| 61 | Turbulence modeling based on non-Newtonian constitutive laws. Journal of Physics: Conference<br>Series, 2011, 318, 042030.                                                                                  | 0.3 | 0         |
| 62 | Modeling turbulent-bounded flow using non-Newtonian viscometric functions. Journal of<br>Turbulence, 2011, 12, N15.                                                                                         | 0.5 | 3         |
| 63 | A constitutive model for non-Newtonian materials based onÂthe persistence-of-straining tensor.<br>Meccanica, 2011, 46, 1035-1045.                                                                           | 1.2 | 22        |
| 64 | Immiscible Newtonian displacement by a viscoplastic material in a capillary plane channel. Rheologica<br>Acta, 2011, 50, 403-422.                                                                           | 1.1 | 18        |
| 65 | Friction losses for power-law and viscoplastic materials in an entrance of a tube and an abrupt contraction. Journal of Petroleum Science and Engineering, 2011, 76, 224-235.                               | 2.1 | 14        |
| 66 | Residual mass and flow regimes for the immiscible liquid–liquid displacement in a plane channel.<br>International Journal of Multiphase Flow, 2011, 37, 640-646.                                            | 1.6 | 14        |
| 67 | Further remarks on numerical investigation on gas displacement of a shear-thinning liquid and a<br>visco-plastic material in capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 2010, 165, 448-452. | 1.0 | 24        |
| 68 | An alternative assessment of weak-equilibrium conditions in turbulent closure modeling.<br>International Journal of Engineering Science, 2010, 48, 1633-1640.                                               | 2.7 | 3         |
| 69 | A methodology to quantify the nonlinearity of the Reynolds stress tensor. Journal of Turbulence, 2010, 11, N33.                                                                                             | O.5 | 14        |
| 70 | Flow classification for viscoelastic materials. International Journal of Advances in Engineering<br>Sciences and Applied Mathematics, 2009, 1, 69-83.                                                       | 0.7 | 2         |
| 71 | Flow regimes for the immiscible liquid–liquid displacement in capillary tubes with complete wetting of the displaced liquid. Journal of Fluid Mechanics, 2009, 641, 63-84.                                  | 1.4 | 28        |
| 72 | Comments on "Objective flow classification parameters and their use in general steady flows―by P.O.<br>Brunn. Rheologica Acta, 2008, 47, 959-961.                                                           | 1.1 | 2         |

RONEY L THOMPSON

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Some perspectives on the dynamic history of a material element. International Journal of Engineering Science, 2008, 46, 224-249.                                                      | 2.7 | 31        |
| 74 | Further remarks on persistence of straining and flow classification. International Journal of Engineering Science, 2007, 45, 504-508.                                                 | 2.7 | 12        |
| 75 | Numerical investigation on gas-displacement of a shear-thinning liquid and a visco-plastic material in capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 2007, 144, 149-159. | 1.0 | 44        |
| 76 | Comments on "Intrinsically unsteady viscometric and quasi-viscometric flows―by R.R. Huilgol.<br>Journal of Non-Newtonian Fluid Mechanics, 2006, 136, 179-180.                         | 1.0 | 3         |
| 77 | Considerations on kinematic flow classification criteria. Journal of Non-Newtonian Fluid Mechanics, 2005, 128, 109-115.                                                               | 1.0 | 21        |
| 78 | Persistence of straining and flow classification. International Journal of Engineering Science, 2005, 43, 79-105.                                                                     | 2.7 | 43        |
| 79 | Considerations on Flow Classification Criteria. , 2004, , .                                                                                                                           |     | 0         |
| 80 | A general transformation procedure for differential viscoelastic models. Journal of Non-Newtonian<br>Fluid Mechanics, 2003, 111, 151-174.                                             | 1.0 | 24        |
| 81 | A New Criterion for Classification of Flows. , 2003, , .                                                                                                                              |     | 0         |
| 82 | A new constitutive equation and its performance in contraction flows. Journal of Non-Newtonian Fluid Mechanics, 1999, 86, 375-388.                                                    | 1.0 | 32        |
| 83 | An Invariant and Highly–Accurate Strategy for Data-Driven Turbulence Modelling. SSRN Electronic                                                                                       | 0.4 | 2         |