Zhibo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Compact Difference Scheme for Fractional Sub-diffusion Equations with the Spatially Variable Coefficient Under Neumann Boundary Conditions. Journal of Scientific Computing, 2016, 66, 725-739.	2.3	42
2	A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Applied Numerical Mathematics, 2020, 151, 448-471.	2.1	41
3	An alternating direction implicit orthogonal spline collocation method for the two dimensional multi-term time fractional integro-differential equation. Applied Numerical Mathematics, 2020, 151, 199-212.	2.1	41
4	Sharp error estimate of a compact L1-ADI scheme for the two-dimensional time-fractional integro-differential equation with singular kernels. Applied Numerical Mathematics, 2021, 159, 190-203.	2.1	40
5	Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems. International Journal of Computer Mathematics, 2016, 93, 1665-1682.	1.8	35
6	Second order difference schemes for time-fractional KdV–Burgers' equation with initial singularity. Applied Mathematics Letters, 2021, 112, 106829.	2.7	33
7	A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Computers and Mathematics With Applications, 2014, 68, 185-196.	2.7	30
8	Compact Finite Difference Scheme for the Fourth-Order Fractional Subdiffusion System. Advances in Applied Mathematics and Mechanics, 2014, 6, 419-435.	1.2	30
9	A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation. International Journal of Computer Mathematics, 2015, 92, 970-979.	1.8	27
10	A highâ€order compact scheme for the nonlinear fractional <scp>K</scp> lein– <scp>G</scp> ordon equation. Numerical Methods for Partial Differential Equations, 2015, 31, 706-722.	3.6	26
11	Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations. Applied Mathematics Letters, 2022, 129, 107919.	2.7	26
12	Fast high order difference schemes for the time fractional telegraph equation. Numerical Methods for Partial Differential Equations, 2020, 36, 154-172.	3.6	24
13	Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations. Applied Numerical Mathematics, 2022, 177, 34-57.	2.1	23
14	An ADI difference scheme based on fractional trapezoidal rule for fractional integro-differential equation with a weakly singular kernel. Applied Mathematics and Computation, 2019, 354, 103-114.	2.2	22
15	High Order Difference Schemes for a Time Fractional Differential Equation with Neumann Boundary Conditions. East Asian Journal on Applied Mathematics, 2014, 4, 222-241.	0.9	20
16	Finite difference schemes for two-dimensional time-space fractional differential equations. International Journal of Computer Mathematics, 2016, 93, 578-595.	1.8	17
17	A second-order scheme with nonuniform time grids for Caputo–Hadamard fractional sub-diffusion equations. Journal of Computational and Applied Mathematics, 2022, 414, 114448.	2.0	16
18	A compact difference scheme for a two dimensional nonlinear fractional Klein–Gordon equation in polar coordinates. Computers and Mathematics With Applications, 2016, 71, 2524-2540.	2.7	10

ZHIBO WANG

#	Article	IF	CITATIONS
19	Numerical simulation for time-fractional diffusion-wave equations with time delay. Journal of Applied Mathematics and Computing, 2023, 69, 137-157.	2.5	8
20	A Guass–Newton-like method for inverse eigenvalue problems. International Journal of Computer Mathematics, 2013, 90, 1435-1447.	1.8	6
21	A compact ADI scheme for the two dimensional time fractional diffusion-wave equation in polar coordinates. Numerical Methods for Partial Differential Equations, 2015, 31, 1692-1712.	3.6	4
22	Quenching of combustion explosion model with balanced spaceâ€fractional derivative. Mathematical Methods in the Applied Sciences, 2020, 43, 4472.	2.3	3
23	A novel high order compact ADI scheme for two dimensional fractional integro-differential equations. Applied Numerical Mathematics, 2021, 167, 257-272.	2.1	3
24	Orthogonal spline collocation method for the two-dimensional time fractional mobile-immobile equation. Journal of Applied Mathematics and Computing, 0, , 1.	2.5	3
25	A Finite Difference Method for Boundary Value Problems of a Caputo Fractional Differential Equation. East Asian Journal on Applied Mathematics, 2017, 7, 752-766.	0.9	2
26	An ADI finite difference method for the two-dimensional Volterra integro-differential equation with weakly singular kernel. International Journal of Computer Mathematics, 2022, 99, 2542-2554.	1.8	2
27	Reliable exponential stabilisation for fractional-order semilinear parabolic distributed parameter systems: an LMI approach. Cyber-Physical Systems, 2020, 6, 146-164.	2.0	1
28	A HIGH ORDER DIFFERENCE METHOD FOR FRACTIONAL SUB-DIFFUSION EQUATIONS WITH THE SPATIALLY VARIABLE COEFFICIENTS UNDER PERIODIC BOUNDARY CONDITIONS. Journal of Applied Analysis and Computation, 2020, 10, 474-485.	0.5	0
29	Efficient numerical algorithms of time fractional telegraphâ€ŧype equations involving Hadamard derivatives. Mathematical Methods in the Applied Sciences, 0, , .	2.3	0