
Naef A A Qasem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exergoeconomic Optimization of an Integrated Supercritical CO2 Power Plant and Ejector-Based Refrigeration System for Electricity and Cooling Production. Arabian Journal for Science and Engineering, 2022, 47, 9137-9149.	1.7	5
2	Exergoeconomic assessment of the ejector-based battery thermal management system for electric and hybrid-electric vehicles. Energy, 2022, 245, 123252.	4.5	19
3	MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder. Mathematics, 2022, 10, 769.	1.1	63
4	Different configurations of humidification-dehumidification desalination systems: Thermal and economic assessment. Energy Conversion and Management, 2022, 258, 115470.	4.4	14
5	Hydrothermal and Entropy Investigation of Nanofluid Mixed Convection in Triangular Cavity with Wavy Boundary Heated from below and Rotating Cylinders. Nanomaterials, 2022, 12, 1469.	1.9	7
6	Explicit prediction models for brackish water electrodialysis desalination plants: Energy consumption and membrane area. Energy Conversion and Management, 2022, 261, 115656.	4.4	8
7	Assessment of Appropriate Geometry for Thermally Efficient CO2 Adsorption Beds. Applied Sciences (Switzerland), 2022, 12, 5726.	1.3	2
8	Novel integration of a parallel-multistage direct contact membrane distillation plant with a double-effect absorption refrigeration system. Applied Energy, 2022, 323, 119572.	5.1	11
9	Enhancing CO2 Adsorption Capacity and Cycling Stability of Mg-MOF-74. Arabian Journal for Science and Engineering, 2021, 46, 6219-6228.	1.7	7
10	Normalized sensitivity analysis of electrodialysis desalination plants for mitigating hypersalinity. Separation and Purification Technology, 2021, 257, 117858.	3.9	3
11	Addressing Mismatch Between the Peripheral and Local Nusselt Number for Non-Axisymmetric Flow Conditions: Redefining the Mean Temperature. Heat Transfer Engineering, 2021, 42, 387-408.	1.2	0
12	A Comprehensive Review of Saline Water Correlations and Data: Part II—Thermophysical Properties. Arabian Journal for Science and Engineering, 2021, 46, 1941-1979.	1.7	33
13	Entropy generation analysis of electrodialysis desalination using multi-component groundwater. Desalination, 2021, 500, 114858.	4.0	3
14	Solar-powered ejector-based adsorption desalination system integrated with a humidification-dehumidification system. Energy Conversion and Management, 2021, 238, 114113.	4.4	42
15	On a thermodynamically-balanced humidification-dehumidification desalination system driven by a vapor-absorption heat pump. Energy Conversion and Management, 2021, 238, 114142.	4.4	16
16	Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 2021, 4, .	3.1	511
17	Waste-heat recovery from a vapor-absorption refrigeration system for a desalination plant. Applied Thermal Engineering, 2021, 195, 117199.	3.0	13
18	An innovative hybridization of electrodialysis with reverse osmosis for brackish water desalination. Energy Conversion and Management, 2021, 245, 114589.	4.4	11

NAEF A A QASEM

#	Article	IF	CITATIONS
19	Techno-economic assessment of electrodialysis and reverse osmosis desalination plants. Separation and Purification Technology, 2021, 272, 118875.	3.9	52
20	Enhancing the thermal and economic performance of supercritical CO2 plant by waste heat recovery using an ejector refrigeration cycle. Energy Conversion and Management, 2020, 224, 113340.	4.4	30
21	A design procedure to size thermodynamically-balanced humidification-dehumidification desalination systems. Energy Conversion and Management, 2020, 224, 113357.	4.4	14
22	A Comprehensive Review of Saline Water Correlations and Data-Part I: Thermodynamic Properties. Arabian Journal for Science and Engineering, 2020, 45, 8817-8876.	1.7	21
23	A comprehensive thermal-hydraulic assessment of solar flat-plate air heaters. Energy Conversion and Management, 2020, 215, 112922.	4.4	17
24	Selectively capturing carbon dioxide from mixed gas streams using a new microporous organic copolymer. Microporous and Mesoporous Materials, 2020, 305, 110391.	2.2	6
25	Exergy-based entropy-generation analysis of electrodialysis desalination systems. Energy Conversion and Management, 2020, 220, 113119.	4.4	13
26	Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system. Applied Energy, 2020, 263, 114659.	5.1	52
27	The impact of thermodynamic potentials on the design of electrodialysis desalination plants. Energy Conversion and Management, 2020, 205, 112448.	4.4	19
28	The significance of modeling electrodialysis desalination using multi-component saline water. Desalination, 2020, 496, 114347.	4.0	29
29	Thermal design and management towards high capacity CO2 adsorption systems. Energy Conversion and Management, 2020, 212, 112796.	4.4	26
30	Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review. Renewable and Sustainable Energy Reviews, 2020, 125, 109817.	8.2	86
31	Experimental and numerical investigation on innovative masonry walls for industrial and residential buildings. Applied Energy, 2020, 276, 115496.	5.1	7
32	A Microporous Organic Copolymer for Selective CO ₂ Capture under Humid Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 13941-13948.	3.2	29
33	Analytical and numerical schemes for thermodynamically balanced humidification-dehumidification description desalination systems. Energy Conversion and Management, 2019, 200, 112052.	4.4	22
34	Improving the performance of thermal management system for electric and hybrid electric vehicles by adding an ejector. Energy Conversion and Management, 2019, 201, 112133.	4.4	23
35	The impact of thermodynamic balancing on performance of a desiccant-based humidification-dehumidification system to harvest freshwater from atmospheric air. Energy Conversion and Management, 2019, 199, 112011.	4.4	24
36	Performance evaluation of a novel hybrid humidification-dehumidification (air-heated) system with an adsorption desalination system. Desalination, 2019, 461, 37-54.	4.0	96

NAEF A A QASEM

#	Article	IF	CITATIONS
37	An assessment of optimal airside heat transfer per unit friction power characteristics of compact heat exchangers. International Journal of Refrigeration, 2019, 99, 479-489.	1.8	4
38	Generalized air-side friction and heat transfer correlations for wavy-fin compact heat exchangers. International Journal of Refrigeration, 2019, 97, 21-30.	1.8	20
39	Adsorption characterization and CO2 breakthrough of MWCNT/Mg-MOF-74 and MWCNT/MIL-100(Fe) composites. International Journal of Energy and Environmental Engineering, 2018, 9, 169-185.	1.3	20
40	Carbon dioxide capture in the presence of water by an amine-based crosslinked porous polymer. Journal of Materials Chemistry A, 2018, 6, 6455-6462.	5.2	39
41	An efficient CO2 adsorptive storage using MOF-5 and MOF-177. Applied Energy, 2018, 210, 317-326.	5.1	151
42	An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74. Energy Conversion and Management, 2018, 156, 10-24.	4.4	83
43	Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation. Applied Energy, 2018, 209, 190-202.	5.1	71
44	Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74. Applied Energy, 2018, 230, 1093-1107.	5.1	60
45	An assessment of the optimal air-side thermal-hydraulic performance of wavy-fin compact heat exchangers. International Journal of Refrigeration, 2018, 96, 117-130.	1.8	7
46	Thermodynamic balancing of the regeneration process in a novel liquid desiccant cooling/desalination system. Energy Conversion and Management, 2018, 176, 86-98.	4.4	18
47	Carbon dioxide adsorption separation from dry and humid CO2/N2 mixture. Computers and Chemical Engineering, 2018, 117, 221-235.	2.0	35
48	Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination, 2018, 441, 62-76.	4.0	35
49	Compact and microchannel heat exchangers: A comprehensive review of air-side friction factor and heat transfer correlations. Energy Conversion and Management, 2018, 173, 555-601.	4.4	69
50	Multicomponent and multi-dimensional modeling and simulation of adsorption-based carbon dioxide separation. Computers and Chemical Engineering, 2017, 99, 255-270.	2.0	31
51	Synthesis, characterization, and CO 2 breakthrough adsorption of a novel MWCNT/MIL-101(Cr) composite. Journal of CO2 Utilization, 2017, 22, 238-249.	3.3	39
52	Oxy-fuel Combustion in a 600 MW Gaseous Fuel Tangentially Fired Boiler. Energy & Fuels, 2017, 31, 12540-12551.	2.5	5
53	Enhancement of adsorption carbon capture capacity of 13X with optimal incorporation of carbon nanotubes. International Journal of Energy and Environmental Engineering, 2017, 8, 219-230.	1.3	11
54	Effect of Radiation Heat Transfer on Naturally Driven Flow Through Parallel-Plate Vertical Channel. Arabian Journal for Science and Engineering, 2017, 42, 1817-1829.	1.7	2

NAEF A A QASEM

#	Article	IF	CITATIONS
55	Investigation of the Effect of the Top and the Bottom Temperatures on the Performance of Humidification Dehumidification Desalination Systems. , 2016, , .		Ο
56	Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review. Applied Energy, 2016, 161, 225-255.	5.1	498
57	Thermal analysis and modeling study of an activated carbon solar adsorption icemaker: Dhahran case study. Energy Conversion and Management, 2015, 100, 310-323.	4.4	22
58	Improving ice productivity and performance for an activated carbon/methanol solar adsorption ice-maker. Solar Energy, 2013, 98, 523-542.	2.9	39