Edwin K Silverman #### List of Publications by Citations Source: https://exaly.com/author-pdf/4139238/edwin-k-silverman-publications-by-citations.pdf Version: 2024-04-10 This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above. The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article. 316 21,208 78 137 papers citations h-index g-index 343 26,324 9 6.35 ext. papers ext. citations avg, IF L-index | # | Paper | IF | Citations | |-----|--|------|-----------| | 316 | Characterisation of COPD heterogeneity in the ECLIPSE cohort. <i>Respiratory Research</i> , 2010 , 11, 122 | 7.3 | 752 | | 315 | Genetic epidemiology of COPD (COPDGene) study design. <i>COPD: Journal of Chronic Obstructive Pulmonary Disease</i> , 2010 , 7, 32-43 | 2 | 749 | | 314 | Chronic obstructive pulmonary disease phenotypes: the future of COPD. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 598-604 | 10.2 | 678 | | 313 | Changes in forced expiratory volume in 1 second over time in COPD. <i>New England Journal of Medicine</i> , 2011 , 365, 1184-92 | 59.2 | 654 | | 312 | An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 693-718 | 10.2 | 602 | | 311 | A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. <i>PLoS Genetics</i> , 2009 , 5, e1000421 | 6 | 537 | | 310 | Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. <i>PLoS ONE</i> , 2012 , 7, e37483 | 3.7 | 521 | | 309 | Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. <i>Genetic Epidemiology</i> , 2004 , 26, 61-9 | 2.6 | 371 | | 308 | Lung volumes and emphysema in smokers with interstitial lung abnormalities. <i>New England Journal of Medicine</i> , 2011 , 364, 897-906 | 59.2 | 350 | | 307 | Pulmonary arterial enlargement and acute exacerbations of COPD. <i>New England Journal of Medicine</i> , 2012 , 367, 913-21 | 59.2 | 316 | | 306 | The clinical features of the overlap between COPD and asthma. <i>Respiratory Research</i> , 2011 , 12, 127 | 7.3 | 308 | | 305 | Clinical practice. Alpha1-antitrypsin deficiency. New England Journal of Medicine, 2009, 360, 2749-57 | 59.2 | 304 | | 304 | Variants in FAM13A are associated with chronic obstructive pulmonary disease. <i>Nature Genetics</i> , 2010 , 42, 200-2 | 36.3 | 295 | | 303 | CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. <i>Radiology</i> , 2015 , 277, 192-205 | 20.5 | 273 | | 302 | Chronic obstructive pulmonary disease. <i>Nature Reviews Disease Primers</i> , 2015 , 1, 15076 | 51.1 | 270 | | 301 | Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. <i>Nature</i> , 2021 , 590, 290-299 | 50.4 | 268 | | 300 | MMP12, lung function, and COPD in high-risk populations. <i>New England Journal of Medicine</i> , 2009 , 361, 2599-608 | 59.2 | 257 | | 299 | Clinical and Radiologic Disease in Smokers With Normal Spirometry. <i>JAMA Internal Medicine</i> , 2015 , 175, 1539-49 | 11.5 | 243 | | |-----|--|------|-----|--| | 298 | A genome-wide association study of pulmonary function measures in the Framingham Heart Study. <i>PLoS Genetics</i> , 2009 , 5, e1000429 | 6 | 242 | | | 297 | PBAT: tools for family-based association studies. <i>American Journal of Human Genetics</i> , 2004 , 74, 367-9 | 11 | 242 | | | 296 | Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases: A Mendelian Randomization Study. <i>JAMA Oncology</i> , 2017 , 3, 636-651 | 13.4 | 236 | | | 295 | Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2008 , 178, 500-5 | 10.2 | 235 | | | 294 | The chronic bronchitic phenotype of COPD: an analysis of the COPDGene Study. <i>Chest</i> , 2011 , 140, 626-6 | 5333 | 229 | | | 293 | Association Between Interstitial Lung Abnormalities and All-Cause Mortality. <i>JAMA - Journal of the American Medical Association</i> , 2016 , 315, 672-81 | 27.4 | 209 | | | 292 | Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis. <i>Lancet Respiratory Medicine,the</i> , 2014 , 2, 214-25 | 35.1 | 208 | | | 291 | The clinical and genetic features of COPD-asthma overlap syndrome. <i>European Respiratory Journal</i> , 2014 , 44, 341-50 | 13.6 | 205 | | | 290 | Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. <i>Nature Genetics</i> , 2017 , 49, 426-432 | 36.3 | 201 | | | 289 | Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 194, 178-84 | 10.2 | 194 | | | 288 | The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. <i>Lancet Respiratory Medicine,the</i> , 2013 , 1, 129-36 | 35.1 | 183 | | | 287 | A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13.
Human Molecular Genetics, 2012 , 21, 947-57 | 5.6 | 181 | | | 286 | The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). <i>Human Molecular Genetics</i> , 2004 , 13, 1649-56 | 5.6 | 176 | | | 285 | Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. <i>Nature Genetics</i> , 2017 , 49, 416-425 | 36.3 | 170 | | | 284 | New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. <i>Nature Genetics</i> , 2019 , 51, 481-493 | 36.3 | 156 | | | 283 | Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2005 , 33, 71-8 | 5.7 | 155 | | | 282 | Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. <i>The American Review of Respiratory Disease</i> , 1989 , 140, 961-6 | | 150 | | | 281 | Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. <i>American Journal of Human Genetics</i> , 2002 , 70, 1229-39 | 11 | 149 | |-----|---|------|-----| | 280 | The SERPINE2 gene is associated with chronic obstructive pulmonary disease. <i>American Journal of Human Genetics</i> , 2006 , 78, 253-64 | 11 | 143 | | 279 | Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. <i>Nature Medicine</i> , 2016 , 22, 163-74 | 50.5 | 136 | | 278 | Early-onset chronic obstructive pulmonary disease is associated with female sex, maternal factors, and African American race in the COPDGene Study. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2011 , 184, 414-20 | 10.2 | 135 | | 277 | Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2012 , 186, 622-32 | 10.2 | 131 | | 276 | Inherited causes of clonal haematopoiesis in 97,691 whole genomes. <i>Nature</i> , 2020 , 586, 763-768 | 50.4 | 127 | | 275 | Case-control association studies for the genetics of complex respiratory diseases. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2000 , 22, 645-8 | 5.7 | 125 | | 274 | Clarification of the risk of chronic obstructive pulmonary disease in 1 1-antitrypsin deficiency PiMZ heterozygotes. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 189, 419-27 | 10.2 | 124 | | 273 | Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. <i>Nature Genetics</i> , 2019 , 51, 494-505 | 36.3 | 119 | | 272 | Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. <i>Thorax</i> , 2014 , 69, 718-23 | 7.3 | 118 | | 271 | Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. <i>Human Molecular Genetics</i> , 2012 , 21, 1325-35 | 5.6 | 118 | | 270 | Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. <i>American Journal of Human Genetics</i> , 2009 , 85, 493-502 | 11 | 118 | | 269 | Genetic
determinants of emphysema distribution in the national emphysema treatment trial. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2007 , 176, 42-8 | 10.2 | 116 | | 268 | Variability of pulmonary function in alpha-1-antitrypsin deficiency: clinical correlates. <i>Annals of Internal Medicine</i> , 1989 , 111, 982-91 | 8 | 114 | | 267 | Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 1498-505 | 10.2 | 111 | | 266 | The SERPINE2 gene is associated with chronic obstructive pulmonary disease in two large populations. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2007 , 176, 167-73 | 10.2 | 111 | | 265 | Telomerase mutations in smokers with severe emphysema. <i>Journal of Clinical Investigation</i> , 2015 , 125, 563-70 | 15.9 | 111 | | 264 | Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. <i>Journal of Allergy and Clinical Immunology</i> , 2003 , 112, 870-6 | 11.5 | 110 | ## (2009-2014) | 263 | Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. <i>Respiratory Research</i> , 2014 , 15, 89 | 7.3 | 109 | |-------------|--|------|-----| | 262 | A disease module in the interactome explains disease heterogeneity, drug response and captures novel pathways and genes in asthma. <i>Human Molecular Genetics</i> , 2015 , 24, 3005-20 | 5.6 | 108 | | 261 | Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2011 , 184, 57-63 | 10.2 | 106 | | 2 60 | A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2015 , 192, 559-69 | 10.2 | 103 | | 259 | The Undiagnosed Diseases Network: Accelerating Discovery about Health and Disease. <i>American Journal of Human Genetics</i> , 2017 , 100, 185-192 | 11 | 102 | | 258 | Lessons from ECLIPSE: a review of COPD biomarkers. <i>Thorax</i> , 2014 , 69, 666-72 | 7.3 | 102 | | 257 | The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. <i>Human Molecular Genetics</i> , 2010 , 19, 526-34 | 5.6 | 101 | | 256 | Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2006 , 173, 977-84 | 10.2 | 100 | | 255 | Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. <i>Investigative Radiology</i> , 2012 , 47, 596-602 | 10.1 | 99 | | 254 | Blood eosinophil count thresholds and exacerbations in patients with chronic obstructive pulmonary disease. <i>Journal of Allergy and Clinical Immunology</i> , 2018 , 141, 2037-2047.e10 | 11.5 | 95 | | 253 | Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 188, 1083-90 | 10.2 | 95 | | 252 | Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. <i>Thorax</i> , 2014 , 69, 415-22 | 7.3 | 94 | | 251 | Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. <i>PLoS Genetics</i> , 2019 , 15, e1008500 | 6 | 90 | | 250 | PRIMUS: rapid reconstruction of pedigrees from genome-wide estimates of identity by descent. <i>American Journal of Human Genetics</i> , 2014 , 95, 553-64 | 11 | 88 | | 249 | Genome-wide association study identifies BICD1 as a susceptibility gene for emphysema. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2011 , 183, 43-9 | 10.2 | 88 | | 248 | Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. <i>Human Molecular Genetics</i> , 2002 , 11, 623-32 | 5.6 | 86 | | 247 | A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. <i>BMC Genetics</i> , 2015 , 16, 138 | 2.6 | 84 | | 246 | Molecular biomarkers for quantitative and discrete COPD phenotypes. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2009 , 40, 359-67 | 5.7 | 84 | | 245 | Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric phenotypes in chronic obstructive pulmonary disease. <i>Human Molecular Genetics</i> , 2003 , 12, 1199-210 | 5.6 | 83 | |-----|---|--------------|----| | 244 | Interobserver variability in the determination of upper lobe-predominant emphysema. <i>Chest</i> , 2007 , 131, 424-31 | 5.3 | 80 | | 243 | CT-based Visual Classification of Emphysema: Association with Mortality in the COPDGene Study. <i>Radiology</i> , 2018 , 288, 859-866 | 20.5 | 80 | | 242 | EBlockers are associated with a reduction in COPD exacerbations. <i>Thorax</i> , 2016 , 71, 8-14 | 7.3 | 78 | | 241 | Genome-wide association study of smoking behaviours in patients with COPD. <i>Thorax</i> , 2011 , 66, 894-90 | 2 7.3 | 78 | | 240 | CT metrics of airway disease and emphysema in severe COPD. <i>Chest</i> , 2009 , 136, 396-404 | 5.3 | 78 | | 239 | Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. <i>Thorax</i> , 2007 , 62, 806-13 | 7.3 | 78 | | 238 | Genome-wide study of percent emphysema on computed tomography in the general population.
The Multi-Ethnic Study of Atherosclerosis Lung/SNP Health Association Resource Study. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 189, 408-18 | 10.2 | 77 | | 237 | Sex differences in emphysema and airway disease in smokers. <i>Chest</i> , 2009 , 136, 1480-1488 | 5.3 | 76 | | 236 | The association of genome-wide significant spirometric loci with chronic obstructive pulmonary disease susceptibility. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2011 , 45, 1147-53 | 5.7 | 75 | | 235 | Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. <i>JAMA - Journal of the American Medical Association</i> , 2018 , 320, 2354-2364 | 27.4 | 75 | | 234 | A Chronic Obstructive Pulmonary Disease Susceptibility Gene, FAM13A, Regulates Protein Stability of ECatenin. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 194, 185-97 | 10.2 | 74 | | 233 | Interstitial lung abnormalities and reduced exercise capacity. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2012 , 185, 756-62 | 10.2 | 74 | | 232 | T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2006 , 173, 64-70 | 10.2 | 74 | | 231 | Risk factors for the development of chronic obstructive pulmonary disease. <i>Medical Clinics of North America</i> , 1996 , 80, 501-22 | 7 | 74 | | 230 | Paired inspiratory-expiratory chest CT scans to assess for small airways disease in COPD. <i>Respiratory Research</i> , 2013 , 14, 42 | 7.3 | 73 | | 229 | Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2013 , 188, 941-7 | 10.2 | 73 | | 228 | Circulating soluble receptor for advanced glycation end products (sRAGE) as a biomarker of emphysema and the RAGE axis in the lung. <i>American Journal of Respiratory and Critical Care Medicina</i> 2015, 192, 785, 92 | 10.2 | 70 | | 227 | CHRNA3/5, IREB2, and ADCY2 are associated with severe chronic obstructive pulmonary disease in Poland. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2012 , 47, 203-8 | 5.7 | 67 | |-----|--|------|----| | 226 | A functional mutation in the terminal exon of elastin in severe, early-onset chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2005 , 33, 355-62 | 5.7 | 66 | | 225 | EAntitrypsin protease inhibitor MZ heterozygosity is associated with airflow obstruction in two large cohorts. <i>Chest</i> , 2010 , 138, 1125-32 | 5.3 | 64 | | 224 | The genetics of chronic obstructive pulmonary disease. Respiratory Research, 2001, 2, 20-6 | 7.3 | 64 | | 223 | Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD. <i>PLoS Genetics</i> , 2016 , 12, e1006011 | 6 | 64 | | 222 | IL10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2008 , 38, 114-20
| 5.7 | 63 | | 221 | Predictors of survival in severe, early onset COPD. <i>Chest</i> , 2004 , 126, 1443-51 | 5.3 | 63 | | 220 | Molecular networks in Network Medicine: Development and applications. <i>Wiley Interdisciplinary Reviews: Systems Biology and Medicine</i> , 2020 , 12, e1489 | 6.6 | 63 | | 219 | The value of blood cytokines and chemokines in assessing COPD. Respiratory Research, 2017, 18, 180 | 7.3 | 62 | | 218 | Genome-wide association identifies regulatory Loci associated with distinct local histogram emphysema patterns. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2014 , 190, 399-409 | 10.2 | 62 | | 217 | Prediction of acute respiratory disease in current and former smokers with and without COPD. <i>Chest</i> , 2014 , 146, 941-950 | 5.3 | 61 | | 216 | Polymorphisms in surfactant protein-D are associated with chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2011 , 44, 316-22 | 5.7 | 61 | | 215 | Cluster analysis in severe emphysema subjects using phenotype and genotype data: an exploratory investigation. <i>Respiratory Research</i> , 2010 , 11, 30 | 7.3 | 61 | | 214 | COPDGene 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2019 , 6, 384-399 | 2.7 | 61 | | 213 | Longitudinal Phenotypes and Mortality in Preserved Ratio Impaired Spirometry in the COPDGene Study. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2018 , 198, 1397-1405 | 10.2 | 59 | | 212 | Dissecting direct and indirect genetic effects on chronic obstructive pulmonary disease (COPD) susceptibility. <i>Human Genetics</i> , 2013 , 132, 431-41 | 6.3 | 59 | | 211 | Progress in chronic obstructive pulmonary disease genetics. <i>Proceedings of the American Thoracic Society</i> , 2006 , 3, 405-8 | | 58 | | 210 | Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue. <i>Scientific Reports</i> , 2017 , 7, 44232 | 4.9 | 57 | | 209 | Genome-wide linkage of forced mid-expiratory flow in chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2004 , 170, 1294-301 | 10.2 | 54 | |-----|---|--------------|----| | 208 | Network medicine approaches to the genetics of complex diseases. <i>Discovery Medicine</i> , 2012 , 14, 143-5. | 2 2.5 | 54 | | 207 | Resequencing Study Confirms That Host Defense and Cell Senescence Gene Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 200, 199-208 | 10.2 | 53 | | 206 | A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. <i>The American Review of Respiratory Disease</i> , 1990 , 142, 1015-21 | | 53 | | 205 | The clinical impact of non-obstructive chronic bronchitis in current and former smokers. <i>Respiratory Medicine</i> , 2014 , 108, 491-9 | 4.6 | 52 | | 204 | SOX5 is a candidate gene for chronic obstructive pulmonary disease susceptibility and is necessary for lung development. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2011 , 183, 1482-9 | 10.2 | 50 | | 203 | DNA methylation profiling in human lung tissue identifies genes associated with COPD. <i>Epigenetics</i> , 2016 , 11, 730-739 | 5.7 | 48 | | 202 | Electronic Cigarette Use in US Adults at Risk for or with COPD: Analysis from Two Observational Cohorts. <i>Journal of General Internal Medicine</i> , 2017 , 32, 1315-1322 | 4 | 48 | | 201 | Genetics of sputum gene expression in chronic obstructive pulmonary disease. <i>PLoS ONE</i> , 2011 , 6, e243 | 95 7 | 48 | | 200 | Desmoplakin Variants Are Associated with Idiopathic Pulmonary Fibrosis. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 193, 1151-60 | 10.2 | 46 | | 199 | Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. <i>Genome Medicine</i> , 2015 , 7, 12 | 14.4 | 45 | | 198 | On the simultaneous association analysis of large genomic regions: a massive multi-locus association test. <i>Bioinformatics</i> , 2014 , 30, 157-64 | 7.2 | 45 | | 197 | Genetic influences on Chronic Obstructive Pulmonary Disease - a twin study. <i>Respiratory Medicine</i> , 2010 , 104, 1890-5 | 4.6 | 45 | | 196 | A simplified score to quantify comorbidity in COPD. <i>PLoS ONE</i> , 2014 , 9, e114438 | 3.7 | 44 | | 195 | Hhip haploinsufficiency sensitizes mice to age-related emphysema. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E4681-7 | 11.5 | 43 | | 194 | Genome-wide association analysis of body mass in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2011 , 45, 304-10 | 5.7 | 43 | | 193 | Association between airway caliber changes with lung inflation and emphysema assessed by volumetric CT scan in subjects with COPD. <i>Chest</i> , 2012 , 141, 736-744 | 5.3 | 43 | | 192 | alpha1-Antitrypsin augmentation therapy for PI*MZ heterozygotes: a cautionary note. <i>Chest</i> , 2008 , 134, 831-834 | 5.3 | 43 | ## (2015-2019) | 191 | Efficient Variant Set Mixed Model Association Tests for Continuous and Binary Traits in Large-Scale Whole-Genome Sequencing Studies. <i>American Journal of Human Genetics</i> , 2019 , 104, 260-274 | 11 | 43 | |-----|---|--------------|----| | 190 | Sarcopenic Obesity, Functional Outcomes, and Systemic Inflammation in Patients With Chronic Obstructive Pulmonary Disease. <i>Journal of the American Medical Directors Association</i> , 2016 , 17, 712-8 | 5.9 | 41 | | 189 | Do COPD subtypes really exist? COPD heterogeneity and clustering in 10 independent cohorts. <i>Thorax</i> , 2017 , 72, 998-1006 | 7.3 | 40 | | 188 | Genetics of COPD and emphysema. <i>Chest</i> , 2009 , 136, 859-866 | 5.3 | 40 | | 187 | Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology, 2020, 294, 434 | - 44. | 40 | | 186 | Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. <i>Annals of the American Thoracic Society</i> , 2017 , 14, 1280-1287 | 4.7 | 39 | | 185 | Genetic susceptibility for chronic bronchitis in chronic obstructive pulmonary disease. <i>Respiratory Research</i> , 2014 , 15, 113 | 7.3 | 39 | | 184 | Sexually-dimorphic targeting of functionally-related genes in COPD. <i>BMC Systems Biology</i> , 2014 , 8, 118 | 3.5 | 38 | | 183 | Opportunities and challenges in the genetics of COPD 2010: an International COPD Genetics Conference report. <i>COPD: Journal of Chronic Obstructive Pulmonary Disease</i> , 2011 , 8, 121-35 | 2 | 38 | | 182 | Genetic Association and Risk Scores in a Chronic Obstructive Pulmonary Disease Meta-analysis of 16,707 Subjects. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2017 , 57, 35-46 | 5.7 | 37 | | 181 | Exome Array Analysis Identifies a Common Variant in IL27 Associated with Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 194, 48-57 | 10.2 | 37 | | 180 | Sex-specific features of emphysema among current and former smokers with COPD. <i>European Respiratory Journal</i> , 2016 , 47, 104-12 | 13.6 | 37 | | 179 | Overlap of Genetic Risk between Interstitial Lung Abnormalities and Idiopathic Pulmonary Fibrosis. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 200, 1402-1413 | 10.2 | 37 | | 178 | Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells. <i>Genomics</i> , 2013 , 101, 263-72 | 4.3 | 37 | | 177 | Epidemiology, radiology, and genetics of nicotine dependence in COPD. <i>Respiratory Research</i> , 2011 , 12, 9 | 7.3 | 36 | | 176 | Network Medicine 2017 , | | 36 | | 175 | Genetics of COPD. Annual Review of Physiology, 2020 , 82, 413-431 | 23.1 | 36 | | 174 | A genome-wide association study of chronic obstructive pulmonary disease in Hispanics. <i>Annals of the American Thoracic Society</i> , 2015 , 12, 340-8 | 4.7 | 35 | | 173 | Exome Sequencing Analysis in Severe, Early-Onset Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2016 , 193, 1353-63 | 10.2 | 35 | |-----|---|-------------------|----| | 172 | It@ more than low BMI: prevalence of cachexia and associated mortality in COPD. <i>Respiratory Research</i> , 2019 , 20, 100 | 7.3 | 34 | | 171 | The promoter polymorphism is associated with specific interstitial lung abnormality subtypes. <i>European Respiratory Journal</i> , 2017 , 50, | 13.6 | 34 | | 170 | Family history is a risk factor for COPD. <i>Chest</i> , 2011 , 140, 343-350 | 5.3 | 34 | | 169 | Family study of alpha
1-antitrypsin deficiency: effects of cigarette smoking, measured genotype, and their interaction on pulmonary function and biochemical traits. <i>Genetic Epidemiology</i> , 1992 , 9, 317-3 | 3 ^{2.6} | 34 | | 168 | Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. <i>Human Molecular Genetics</i> , 2015 , 24, 1200-10 | 5.6 | 33 | | 167 | Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2017 , 195, 757-771 | 10.2 | 33 | | 166 | Transforming growth factor-beta receptor-3 is associated with pulmonary emphysema. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2009 , 41, 324-31 | 5.7 | 33 | | 165 | Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 200, 677-690 | 10.2 | 31 | | 164 | Variability of pulmonary function in alpha-1-antitrypsin deficiency: residual family resemblance beyond the effect of the Pi locus. <i>Human Heredity</i> , 1990 , 40, 340-55 | 1.1 | 31 | | 163 | COPD subtypes identified by network-based clustering of blood gene expression. <i>Genomics</i> , 2016 , 107, 51-58 | 4.3 | 30 | | 162 | RNA sequencing identifies novel non-coding RNA and exon-specific effects associated with cigarette smoking. <i>BMC Medical Genomics</i> , 2017 , 10, 58 | 3.7 | 29 | | 161 | Human Lung DNA Methylation Quantitative Trait Loci Colocalize with Chronic Obstructive Pulmonary Disease Genome-Wide Association Loci. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2018 , 197, 1275-1284 | 10.2 | 29 | | 160 | Utilizing the Jaccard index to reveal population stratification in sequencing data: a simulation study and an application to the 1000 Genomes Project. <i>Bioinformatics</i> , 2016 , 32, 1366-72 | 7.2 | 29 | | 159 | Clinical Epidemiology of COPD: Insights From 10 Years of the COPDGene Study. <i>Chest</i> , 2019 , 156, 228-2 | 35 3 | 29 | | 158 | Chest computed tomography-derived low[fat-free mass index and mortality in COPD. European Respiratory Journal, 2017, 50, | 13.6 | 29 | | 157 | Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts. <i>Lancet Respiratory Medicine,the</i> , 2020 , 8, 696-708 | 35.1 | 29 | | 156 | Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2010 , 182, 605-13 | 3 ^{10.2} | 28 | | 155 | Genetic linkage and association analysis of COPD-related traits on chromosome 8p. <i>COPD: Journal of Chronic Obstructive Pulmonary Disease</i> , 2006 , 3, 189-94 | 2 | 28 | |--------------------------|--|--------------------------------|--| | 154 | A comparison of visual and quantitative methods to identify interstitial lung abnormalities. <i>BMC Pulmonary Medicine</i> , 2015 , 15, 134 | 3.5 | 27 | | 153 | Peripheral blood gene expression profiles in COPD subjects. <i>Journal of Clinical Bioinformatics</i> , 2011 , 1, 12 | | 27 | | 152 | Chronic Obstructive Pulmonary Disease Genetics: A Review of the Past and a Look Into the Future. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2014 , 1, 33-46 | 2.7 | 27 | | 151 | Persistent and Newly Developed Chronic Bronchitis Are Associated with Worse Outcomes in Chronic Obstructive Pulmonary Disease. <i>Annals of the American Thoracic Society</i> , 2016 , 13, 1016-25 | 4.7 | 27 | | 150 | Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. <i>BMC Systems Biology</i> , 2014 , 8, 78 | 3.5 | 26 | | 149 | Subtyping COPD by Using Visual and Quantitative CT Imaging Features. <i>Chest</i> , 2020 , 157, 47-60 | 5.3 | 25 | | 148 | Pectoralis muscle area and mortality in smokers without airflow obstruction. <i>Respiratory Research</i> , 2018 , 19, 62 | 7.3 | 24 | | 147 | National Emphysema Treatment Trial state of the art: genetics of emphysema. <i>Proceedings of the American Thoracic Society</i> , 2008 , 5, 486-93 | | 24 | | | | | | | 146 | Exacerbations in chronic obstructive pulmonary disease: do they contribute to disease progression?. <i>Proceedings of the American Thoracic Society</i> , 2007 , 4, 586-90 | | 24 | | 146 | | 2 2 8 ^{.5} | 24 | | | progression?. <i>Proceedings of the American Thoracic Society</i> , 2007 , 4, 586-90 Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without | 2 <mark>28^{.5}</mark> | | | 145 | Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. <i>Radiology</i> , 2020 , 295, 218-20 IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive | | 24 | | 145
144 | Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. <i>Radiology</i> , 2020 , 295, 218-20 IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 52, 365-76 Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. <i>Chest</i> , | 5.7 | 24 | | 145
144
143 | Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. <i>Radiology</i> , 2020 , 295, 218-2 IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 52, 365-76 Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. <i>Chest</i> , 2018 , 153, 65-76 Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. <i>American Journal of</i> | 5·7
5·3 | 242323 | | 145
144
143 | Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. <i>Radiology</i> , 2020 , 295, 218-22. IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 52, 365-76. Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. <i>Chest</i> , 2018 , 153, 65-76. Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 199, 52-61. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. <i>American</i> | 5·7
5·3
10.2 | 24232323 | | 145
144
143
142 | Five-year Progression of Emphysema and Air Trapping at CT in Smokers with and Those without Chronic Obstructive Pulmonary Disease: Results from the COPDGene Study. <i>Radiology</i> , 2020 , 295, 218-22. IREB2 and GALC are associated with pulmonary artery enlargement in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2015 , 52, 365-76. Lobar Emphysema Distribution Is Associated With 5-Year Radiological Disease Progression. <i>Chest</i> , 2018 , 153, 65-76. Identification of Functional Variants in the FAM13A Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Locus by Massively Parallel Reporter Assays. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 199, 52-61. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2017 , 57, 47-58. Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene. |
5·7
5·3
10.2 | 2423232322 | | 137 | Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. <i>Respiratory Research</i> , 2018 , 19, 209 | 7.3 | 22 | |-----|--|-------------------------|----| | 136 | Effect of emphysema on CT scan measures of airway dimensions in smokers. <i>Chest</i> , 2013 , 143, 687-693 | 5.3 | 21 | | 135 | Genetics of chronic obstructive pulmonary disease. <i>Seminars in Respiratory and Critical Care Medicine</i> , 2003 , 24, 151-60 | 3.9 | 21 | | 134 | Systemic Markers of Adaptive and Innate Immunity Are Associated with Chronic Obstructive Pulmonary Disease Severity and Spirometric Disease Progression. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2018 , 58, 500-509 | 5.7 | 21 | | 133 | Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease Network Module. <i>Scientific Reports</i> , 2018 , 8, 14439 | 4.9 | 21 | | 132 | RNA-sequencing across three matched tissues reveals shared and tissue-specific gene expression and pathway signatures of COPD. <i>Respiratory Research</i> , 2019 , 20, 65 | 7.3 | 20 | | 131 | Ensemble genomic analysis in human lung tissue identifies novel genes for chronic obstructive pulmonary disease. <i>Human Genomics</i> , 2018 , 12, 1 | 6.8 | 20 | | 130 | The St. George Respiratory Questionnaire Definition of Chronic Bronchitis May Be a Better Predictor of COPD Exacerbations Compared With the Classic Definition. <i>Chest</i> , 2019 , 156, 685-695 | 5.3 | 19 | | 129 | Influence of SIGLEC9 polymorphisms on COPD phenotypes including exacerbation frequency. <i>Respirology</i> , 2017 , 22, 684-690 | 3.6 | 19 | | 128 | Genetic associations with hypoxemia and pulmonary arterial pressure in COPD. <i>Chest</i> , 2009 , 135, 737-74 | 14 .3 | 19 | | 127 | Elevated circulating MMP-9 is linked to increased COPD exacerbation risk in SPIROMICS and COPDGene. <i>JCI Insight</i> , 2018 , 3, | 9.9 | 19 | | 126 | Susceptibility to chronic mucus hypersecretion, a genome wide association study. <i>PLoS ONE</i> , 2014 , 9, e91621 | 3.7 | 19 | | 125 | Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. <i>Scientific Reports</i> , 2020 , 10, 3361 | 4.9 | 18 | | 124 | Radiological correlates and clinical implications of the paradoxical lung function response to II agonists: an observational study. <i>Lancet Respiratory Medicine,the</i> , 2014 , 2, 911-918 | 35.1 | 18 | | 123 | Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. <i>Genetic Epidemiology</i> , 2014 , 38, 652-9 | 2.6 | 18 | | 122 | Smoke and mirrors: Mouse models as a reflection of human chronic obstructive pulmonary disease. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2004 , 170, 929-31 | 10.2 | 18 | | 121 | Machine Learning Characterization of COPD Subtypes: Insights From the COPDGene Study. <i>Chest</i> , 2020 , 157, 1147-1157 | 5.3 | 18 | | 120 | Susceptibility to Childhood Pneumonia: A Genome-Wide Analysis. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2017 , 56, 20-28 | 5.7 | 17 | | 119 | Common genetic variants associated with resting oxygenation in chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2014 , 51, 678-87 | 5.7 | 17 | | |-----|---|------|----|--| | 118 | Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research. <i>Circulation Genomic and Precision Medicine</i> , 2018 , 11, e002178 | 5.2 | 16 | | | 117 | Genome-wide site-specific differential methylation in the blood of individuals with Klinefelter syndrome. <i>Molecular Reproduction and Development</i> , 2015 , 82, 377-86 | 2.6 | 16 | | | 116 | Pulmonary function and emphysema in Williams-Beuren syndrome. <i>American Journal of Medical Genetics, Part A</i> , 2010 , 152A, 653-6 | 2.5 | 16 | | | 115 | Genome-wide linkage analysis of pulmonary function in families of children with asthma in Costa Rica. <i>Thorax</i> , 2007 , 62, 224-30 | 7.3 | 16 | | | 114 | Machine Learning and Prediction of All-Cause Mortality in COPD. <i>Chest</i> , 2020 , 158, 952-964 | 5.3 | 15 | | | 113 | Beyond GWAS in COPD: probing the landscape between gene-set associations, genome-wide associations and protein-protein interaction networks. <i>Human Heredity</i> , 2014 , 78, 131-9 | 1.1 | 15 | | | 112 | Pulmonary Subtypes Exhibit Differential Global Initiative for Chronic Obstructive Lung Disease Spirometry Stage Progression: The COPDGene Study. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2019 , 6, 414-429 | 2.7 | 15 | | | 111 | Risk of Lung Disease in PI MZ Heterozygotes. Current Status and Future Research Directions. <i>Annals of the American Thoracic Society</i> , 2016 , 13 Suppl 4, S341-5 | 4.7 | 15 | | | 110 | Genetic Epidemiology of COPD. <i>Chest</i> , 2002 , 121, 1S-6S | 5.3 | 14 | | | 109 | Identification of Chronic Obstructive Pulmonary Disease Axes That Predict All-Cause Mortality: The COPDGene Study. <i>American Journal of Epidemiology</i> , 2018 , 187, 2109-2116 | 3.8 | 14 | | | 108 | Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. <i>Npj Systems Biology and Applications</i> , 2018 , 4, 25 | 5 | 14 | | | 107 | Whole-Genome Sequencing in Severe Chronic Obstructive Pulmonary Disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2018 , 59, 614-622 | 5.7 | 14 | | | 106 | Clinical, physiologic, and radiographic factors contributing to development of hypoxemia in moderate to severe COPD: a cohort study. <i>BMC Pulmonary Medicine</i> , 2016 , 16, 169 | 3.5 | 13 | | | 105 | Visual Assessment of Chest Computed Tomographic Images Is Independently Useful for Genetic Association Analysis in Studies of Chronic Obstructive Pulmonary Disease. <i>Annals of the American Thoracic Society</i> , 2017 , 14, 33-40 | 4.7 | 13 | | | 104 | A Bayesian Nonparametric Model for Disease Subtyping: Application to Emphysema Phenotypes. <i>IEEE Transactions on Medical Imaging</i> , 2017 , 36, 343-354 | 11.7 | 13 | | | 103 | Analysis of exonic elastin variants in severe, early-onset chronic obstructive pulmonary disease. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2009 , 40, 751-5 | 5.7 | 13 | | | 102 | Subtypes of COPD Have Unique Distributions and Differential Risk of Mortality. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2019 , 6, 400-413 | 2.7 | 13 | | | 101 | Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. <i>Nature Communications</i> , 2020 , 11, 811 | 17.4 | 13 | |-----|--|------|----| | 100 | Increasing Generality and Power of Rare-Variant Tests by Utilizing Extended Pedigrees. <i>American Journal of Human Genetics</i> , 2016 , 99, 846-859 | 11 | 13 | | 99 | Disease Severity Dependence of the Longitudinal Association Between CT Lung Density and Lung Function in Smokers. <i>Chest</i> , 2018 , 153, 638-645 | 5.3 | 12 | | 98 | Linkage analysis of alpha 1-antitrypsin deficiency: lessons for complex diseases. <i>Human Heredity</i> , 2001 , 52, 223-32 | 1.1 | 12 | | 97 | Identification of an emphysema-associated genetic variant near with regulatory effects in lung fibroblasts. <i>ELife</i> , 2019 , 8, | 8.9 | 12 | | 96 | Metabolomic profiling in a Hedgehog Interacting Protein (Hhip) murine model of chronic obstructive pulmonary disease. <i>Scientific Reports</i> , 2017 , 7, 2504 | 4.9 | 11 | | 95 | Integrating Multiple Correlated Phenotypes for Genetic Association Analysis by Maximizing Heritability. <i>Human Heredity</i> , 2015 , 79, 93-104 | 1.1 | 11 | | 94 | Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline: Five-Year Follow-up in Adult Smokers From the COPDGene Study. <i>Chest</i> , 2018 , 153, 368-377 | 5.3 | 11 | | 93 | Inherited Causes of Clonal Hematopoiesis of Indeterminate Potential in TOPMed Whole Genomes | | 11 | | 92 | Lung Mass in Smokers. <i>Academic Radiology</i> , 2017 , 24, 386-392 | 4.3 | 10 | | 91 | Subjects with diffuse idiopathic skeletal hyperostosis have an increased burden of coronary artery disease: An evaluation in the COPDGene cohort. <i>Atherosclerosis</i> , 2019 , 287, 24-29 | 3.1 | 10 | | 90 | Luminal Plugging on Chest CT Scan: Association With Lung Function, Quality of Life, and COPD Clinical Phenotypes. <i>Chest</i> , 2020 , 158, 121-130 | 5.3 | 10 | | 89 | Genetics of Chronic Obstructive Pulmonary Disease. <i>Novartis Foundation Symposium</i> , 2008 , 45-64 | | 10 | | 88 | Pulmonary artery enlargement and mortality risk in moderate to severe COPD: results from COPDGene. <i>European Respiratory Journal</i> , 2020 , 55,
 13.6 | 9 | | 87 | Integrative genomics identifies new genes associated with severe COPD and emphysema. <i>Respiratory Research</i> , 2018 , 19, 46 | 7.3 | 9 | | 86 | Analysis of genetically driven alternative splicing identifies FBXO38 as a novel COPD susceptibility gene. <i>PLoS Genetics</i> , 2019 , 15, e1008229 | 6 | 9 | | 85 | Estimating drivers of cell state transitions using gene regulatory network models. <i>BMC Systems Biology</i> , 2017 , 11, 139 | 3.5 | 9 | | 84 | Microarray data-based prioritization of chronic obstructive pulmonary disease susceptibility genes. <i>Proceedings of the American Thoracic Society</i> , 2006 , 3, 472 | | 9 | | 83 | Haplotype thinking in lung disease. <i>Proceedings of the American Thoracic Society</i> , 2007 , 4, 4-8 | | 9 | |----|---|------|---| | 82 | Pulmonary Predictors of Incident Diabetes in Smokers. <i>Chronic Obstructive Pulmonary Diseases</i> (Miami, Fla), 2016 , 3, 739-747 | 2.7 | 9 | | 81 | Clinical epigenetics settings for cancer and cardiovascular diseases: real-life applications of network medicine at the bedside. <i>Clinical Epigenetics</i> , 2021 , 13, 66 | 7.7 | 9 | | 80 | Genome-Wide Gene-by-Smoking Interaction Study of Chronic Obstructive Pulmonary Disease. <i>American Journal of Epidemiology</i> , 2021 , 190, 875-885 | 3.8 | 9 | | 79 | On the association analysis of genome-sequencing data: A spatial clustering approach for partitioning the entire genome into nonoverlapping windows. <i>Genetic Epidemiology</i> , 2017 , 41, 332-340 | 2.6 | 8 | | 78 | Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. <i>Human Molecular Genetics</i> , 2019 , 28, 2352-2364 | 5.6 | 8 | | 77 | Low FVC/TLC in Preserved Ratio Impaired Spirometry (PRISm) is associated with features of and progression to obstructive lung disease. <i>Scientific Reports</i> , 2020 , 10, 5169 | 4.9 | 8 | | 76 | Genomics and response to long-term oxygen therapy in chronic obstructive pulmonary disease.
Journal of Molecular Medicine, 2018 , 96, 1375-1385 | 5.5 | 8 | | 75 | Body mass index change in gastrointestinal cancer and chronic obstructive pulmonary disease is associated with Dedicator of Cytokinesis 1. <i>Journal of Cachexia, Sarcopenia and Muscle</i> , 2017 , 8, 428-436 | 10.3 | 7 | | 74 | Common and Rare Variants Genetic Association Analysis of Cigarettes per Day Among Ever-Smokers in Chronic Obstructive Pulmonary Disease Cases and Controls. <i>Nicotine and Tobacco Research</i> , 2019 , 21, 714-722 | 4.9 | 7 | | 73 | Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COPD. <i>Respiratory Research</i> , 2021 , 22, 127 | 7.3 | 7 | | 72 | GWAS and systems biology analysis of depressive symptoms among smokers from the COPDGene cohort. <i>Journal of Affective Disorders</i> , 2019 , 243, 16-22 | 6.6 | 7 | | 71 | Epigenetics and pulmonary diseases in the horizon of precision medicine: a review. <i>European Respiratory Journal</i> , 2021 , 57, | 13.6 | 7 | | 70 | Population sequencing data reveal a compendium of mutational processes in the human germ line. <i>Science</i> , 2021 , 373, 1030-1035 | 33.3 | 7 | | 69 | Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder <i>Lancet Respiratory Medicine,the</i> , 2022 , | 35.1 | 7 | | 68 | Markers of disease activity in COPD: an 8-year mortality study in the ECLIPSE cohort. <i>European Respiratory Journal</i> , 2021 , 57, | 13.6 | 6 | | 67 | Whole genome sequence analysis of pulmonary function and COPD in 19,996 multi-ethnic participants. <i>Nature Communications</i> , 2020 , 11, 5182 | 17.4 | 6 | | 66 | Sex-specific associations with DNA methylation in lung tissue demonstrate smoking interactions. <i>Epigenetics</i> , 2021 , 16, 692-703 | 5.7 | 6 | | 65 | Applying Functional Genomics to Chronic Obstructive Pulmonary Disease. <i>Annals of the American Thoracic Society</i> , 2018 , 15, S239-S242 | 4.7 | 6 | |----|--|------|---| | 64 | New genetic signals for lung function highlight pathways and pleiotropy, and chronic obstructive pulmonary disease associations across multiple ancestries | | 5 | | 63 | Interpretable Clustering via Discriminative Rectangle Mixture Model 2016, | | 5 | | 62 | locStra: Fast analysis of regional/global stratification in whole-genome sequencinglstudies. <i>Genetic Epidemiology</i> , 2021 , 45, 82-98 | 2.6 | 5 | | 61 | Genome-Wide Association Analysis of Single-Breath Dl. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2019 , 60, 523-531 | 5.7 | 4 | | 60 | A Between Ethnicities Comparison of Chronic Obstructive Pulmonary Disease Genetic Risk. <i>Frontiers in Genetics</i> , 2020 , 11, 329 | 4.5 | 4 | | 59 | DSP variants may be associated with longitudinal change in quantitative emphysema. <i>Respiratory Research</i> , 2019 , 20, 160 | 7-3 | 4 | | 58 | Sequencing Analysis at 8p23 Identifies Multiple Rare Variants in DLC1 Associated with Sleep-Related Oxyhemoglobin Saturation Level. <i>American Journal of Human Genetics</i> , 2019 , 105, 1057- | 1068 | 4 | | 57 | Perspective: How can genetics help?. <i>Nature</i> , 2012 , 489, S7 | 50.4 | 4 | | 56 | Genetics and epidemiology of AATD 2019 , 27-38 | | 4 | | 55 | Hemizygous Deletion on Chromosome 3p26.1 Is Associated with Heavy Smoking among African American Subjects in the COPDGene Study. <i>PLoS ONE</i> , 2016 , 11, e0164134 | 3.7 | 4 | | 54 | Heterozygosity of the Alpha 1-Antitrypsin Pi*Z Allele and Risk of Liver Disease. <i>Hepatology Communications</i> , 2021 , 5, 1348-1361 | 6 | 4 | | 53 | Identifying a Deletion Affecting Total Lung Capacity Among Subjects in the COPDGene Study Cohort. <i>Genetic Epidemiology</i> , 2016 , 40, 81-8 | 2.6 | 4 | | 52 | Do sputum or circulating blood samples reflect the pulmonary transcriptomic differences of COPD patients? A multi-tissue transcriptomic network META-analysis. <i>Respiratory Research</i> , 2019 , 20, 5 | 7.3 | 4 | | 51 | Diffuse Idiopathic Skeletal Hyperostosis in Smokers and Restrictive Spirometry Pattern: An Analysis of the COPDGene Cohort. <i>Journal of Rheumatology</i> , 2020 , 47, 531-538 | 4.1 | 4 | | 50 | Reported environmental exposures are inversely associated with obtaining a genetic diagnosis in the Undiagnosed Diseases Network. <i>American Journal of Medical Genetics, Part A</i> , 2019 , 179, 958-965 | 2.5 | 3 | | 49 | Assessing pleiotropy and mediation in genetic loci associated with chronic obstructive pulmonary disease. <i>Genetic Epidemiology</i> , 2019 , 43, 318-329 | 2.6 | 3 | | 48 | Gene-environment interaction testing in family-based association studies with phenotypically ascertained samples: a causal inference approach. <i>Biostatistics</i> , 2012 , 13, 468-81 | 3.7 | 3 | ## (2021-2020) | 47 | The Association of Multiparity with Lung Function and Chronic Obstructive Pulmonary Disease-Related Phenotypes. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2020 , 7, 86-98 | 2.7 | 3 | | |----|--|----------------|---|--| | 46 | A Risk Prediction Model for Mortality Among Smokers in the COPDGene Study. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2020 , 7, 346-361 | 2.7 | 3 | | | 45 | Serum Proteins Associated with Emphysema Progression in Severe Alpha-1 Antitrypsin Deficiency. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2017 , 4, 204-216 | 2.7 | 3 | | | 44 | ADAM15 expression is increased in lung CD8 T cells, macrophages, and bronchial epithelial cells in patients with COPD and is inversely related to airflow obstruction. <i>Respiratory Research</i> , 2020 , 21, 188 | 7.3 | 3 | | | 43 | Somatotypes trajectories during adulthood and their association with COPD phenotypes. <i>ERJ Open Research</i> , 2020 , 6, | 3.5 | 3 | | | 42 | Identification of putative causal loci in whole-genome sequencing data via knockoff statistics. Nature Communications, 2021 , 12, 3152 | 17.4 | 3 | | | 41 | Secondary polycythemia in chronic obstructive pulmonary disease: prevalence and risk factors. <i>BMC Pulmonary Medicine</i> , 2021 , 21, 235 | 3.5 | 3 | | | 40 | FARVATX: Family-Based Rare Variant Association Test for X-Linked Genes. <i>Genetic Epidemiology</i> , 2016 , 40, 475-85 | 2.6 | 3 | | | 39 | DNA methylation perturbations may link altered development and aging in the lung. <i>Aging</i> , 2021 , 13, 1742-1764 | 5.6 | 3 | | | 38 | Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential <i>Science Advances</i> , 2022 , 8, eabl6579 | 14.3 | 3 | | | 37 | Interaction of Cigarette Smoking and Polygenic Risk Score on Reduced Lung Function <i>JAMA Network Open</i> , 2021 , 4, e2139525 | 10.4 | 3 | | | 36 | Turning subtypes into disease axes to improve prediction of COPD progression. <i>Thorax</i> , 2019 , 74, 906-9 | 9 0,9 3 | 2
 | | 35 | Validation of a method to assess emphysema severity by spirometry in the COPDGene study. <i>Respiratory Research</i> , 2020 , 21, 103 | 7.3 | 2 | | | 34 | Relative contributions of family history and a polygenic risk score on COPD and related outcomes: COPDGene and ECLIPSE studies. <i>BMJ Open Respiratory Research</i> , 2020 , 7, | 5.6 | 2 | | | 33 | A flexible and nearly optimal sequential testing approach to randomized testing: QUICK-STOP. <i>Genetic Epidemiology</i> , 2020 , 44, 139-147 | 2.6 | 2 | | | 32 | Genome-wide association analysis of COVID-19 mortality risk in SARS-CoV-2 genomes identifies mutation in the SARS-CoV-2 spike protein that colocalizes with P.1 of the Brazilian strain. <i>Genetic Epidemiology</i> , 2021 , 45, 685-693 | 2.6 | 2 | | | 31 | A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2021 , 321, L130-L143 | 5.8 | 2 | | | 30 | Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2021 , 65, 92-102 | 5.7 | 2 | | | 29 | Significant Spirometric Transitions and Preserved Ratio Impaired Spirometry Among Ever Smokers. <i>Chest</i> , 2021 , | 5.3 | 2 | |----|---|------|---| | 28 | Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed <i>Cell Genomics</i> , 2022 , 2, 100084-100084 | | 1 | | 27 | Interstitial Lung Abnormalities, Emphysema and Spirometry in Smokers. Chest, 2021, | 5.3 | 1 | | 26 | Powerful gene-based testing by integrating long-range chromatin interactions and knockoff genotypes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118, | 11.5 | 1 | | 25 | Alternative poly-adenylation modulates 1 -antitrypsin expression in chronic obstructive pulmonary disease. <i>PLoS Genetics</i> , 2021 , 17, e1009912 | 6 | 1 | | 24 | Lung proteomic biomarkers associated with chronic obstructive pulmonary disease. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2021 , 321, L1119-L1130 | 5.8 | 1 | | 23 | Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease
Network Module | | 1 | | 22 | A fast and efficient smoothing approach to Lasso regression and an application in statistical genetics: polygenic risk scores for chronic obstructive pulmonary disease (COPD). <i>Statistics and Computing</i> , 2021 , 31, 1 | 1.8 | 1 | | 21 | Connecting COPD GWAS Genes: FAM13A Controls TGF2 Secretion by Modulating AP-3 Transport. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2021 , 65, 532-543 | 5.7 | 1 | | 20 | An Integrative Genomic Strategy Identifies sRAGE as a Causal and Protective Biomarker of Lung Function. <i>Chest</i> , 2021 , | 5.3 | 1 | | 19 | Expert Panel Discusses the Importance of Systems Medicine. <i>Systems Medicine (New Rochelle, N Y)</i> , 2018 , 1, 3-8 | 1.6 | 1 | | 18 | Pulmonary Artery Enlargement Is Associated with Exacerbations and Mortality in Ever-Smokers with Preserved Ratio Impaired Spirometry. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2021 , 204, 481-485 | 10.2 | 1 | | 17 | Hedgehog interacting protein-expressing lung fibroblasts suppress lymphocytic inflammation in mice. <i>JCI Insight</i> , 2021 , 6, | 9.9 | 1 | | 16 | Genetic variation in genes regulating skeletal muscle regeneration and tissue remodelling associated with weight loss in chronic obstructive pulmonary disease. <i>Journal of Cachexia, Sarcopenia and Muscle,</i> 2021 , | 10.3 | 1 | | 15 | Increased mortality associated with frequent exacerbations in COPD patients with mild-to-moderate lung function impairment, and smokers with normal spirometry. <i>Respiratory Medicine: X</i> , 2021 , 3, 100025 | 1.6 | 1 | | 14 | Reply to Marruchella: Preserved Ratio Impaired Spirometry and Interstitial Lung Abnormalities in Smokers. <i>American Journal of Respiratory and Critical Care Medicine</i> , 2019 , 199, 1293-1294 | 10.2 | 0 | | 13 | Heme metabolism genes Downregulated in COPD Cachexia. Respiratory Research, 2020, 21, 100 | 7.3 | 0 | | 12 | Optimism is associated with respiratory symptoms and functional status in chronic obstructive pulmonary disease <i>Respiratory Research</i> , 2022 , 23, 19 | 7.3 | O | #### LIST OF PUBLICATIONS | 11 | Improved prediction of smoking status via isoform-aware RNA-seq deep learning models. <i>PLoS Computational Biology</i> , 2021 , 17, e1009433 | 5 | 0 | |----|---|------|---| | 10 | Genetic Variation in the Mitochondrial Glycerol-3-Phosphate Acyltransferase Is Associated With Liver Injury. <i>Hepatology</i> , 2021 , 74, 3394-3408 | 11.2 | 0 | | 9 | Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease <i>Respiratory Research</i> , 2022 , 23, 69 | 7.3 | 0 | | 8 | Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis <i>Respiratory Research</i> , 2022 , 23, 97 | 7-3 | 0 | | 7 | Big Data and Network Medicine in COPD 2017 , 321-332 | | | | 6 | Genetics of Asthma and COPD 2009 , 37-51 | | | | 5 | A multidisciplinary approach to a better understanding of and therapy for chronic obstructive pulmonary disease. <i>Journal of Organ Dysfunction</i> , 2006 , 2, 176-182 | | | | 4 | Letter to the Editor: Response by Authors. <i>Chronic Obstructive Pulmonary Diseases (Miami, Fla)</i> , 2020 , 7, 82-85 | 2.7 | | | 3 | Using Network Methodology to Infer Population Substructure. PLoS ONE, 2015, 10, e0130708 | 3.7 | | | 2 | Covariate adjustment of spirometric and smoking phenotypes: The potential of neural network models <i>PLoS ONE</i> , 2022 , 17, e0266752 | 3.7 | | | 1 | The Value of Rare Genetic Variation in the Prediction of Common Obesity in European Ancestry Populations <i>Frontiers in Endocrinology</i> , 2022 , 13, 863893 | 5.7 | |