Ikuro Abe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4139002/publications.pdf

Version: 2024-02-01

322 papers 12,542 citations

53 h-index 91 g-index

410 all docs

410 docs citations

410 times ranked

9548 citing authors

#	Article	IF	CITATIONS
1	Structure-based engineering of α-ketoglutarate dependent oxygenases in fungal meroterpenoid biosynthesis. Natural Product Reports, 2023, 40, 46-61.	5.2	5
2	Molecular insights into the unusually promiscuous and catalytically versatile Fe(II)/ \hat{l} ±-ketoglutarate-dependent oxygenase SptF. Nature Communications, 2022, 13, 95.	5.8	17
3	Discovery of a Cryptic Nitro Intermediate in the Biosynthesis of the 3-(<i>trans</i> -2′-Aminocyclopropyl)alanine Moiety of Belactosin A. Organic Letters, 2022, 24, 736-740.	2.4	11
4	Identification of a diarylpentanoid-producing polyketide synthase revealing an unusual biosynthetic pathway of 2-(2-phenylethyl)chromones in agarwood. Nature Communications, 2022, 13, 348.	5.8	29
5	Rational Engineering of the Nonheme Iron- and 2-Oxoglutarate-Dependent Oxygenase SptF. Organic Letters, 2022, 24, 1737-1741.	2.4	3
6	A Multifunctional Cytochrome P450 and a Meroterpenoid Cyclase in the Biosynthesis of Fungal Meroterpenoid Atlantinone B. Organic Letters, 2022, 24, 2526-2530.	2.4	6
7	Structure-based redesign of Fe(<scp>ii</scp>)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chemical Communications, 2022, 58, 5510-5513.	2.2	5
8	Understanding and Manipulating Assembly Line Biosynthesis by Heterologous Expression in Streptomyces. Methods in Molecular Biology, 2022, 2489, 223-238.	0.4	2
9	Characterization of Enzymes Catalyzing the Initial Steps of the \hat{I}^2 -Lactam Tabtoxin Biosynthesis. Organic Letters, 2022, 24, 3337-3341.	2.4	1
10	Discovery of non-squalene triterpenes. Nature, 2022, 606, 414-419.	13.7	71
11	Structure, function, and engineering of plant polyketide synthases. Methods in Enzymology, 2022, , .	0.4	O
12	Enzymatic Formation of Indolactam Scaffold by Câ^'N Bondâ€Forming Cytochrome P450 Oxidases in Teleocidin Biosynthesis. Chemistry - A European Journal, 2021, 27, 2963-2972.	1.7	18
13	Chemistry of fungal meroterpenoid cyclases. Natural Product Reports, 2021, 38, 566-585.	5.2	42
14	Biosynthesis of alkyne-containing natural products. RSC Chemical Biology, 2021, 2, 166-180.	2.0	29
15	Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	14
16	A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology, 2021, 17, 363-368.	3.9	81
17	One Polyketide Synthase, Two Distinct Products: <i>Trans</i> êActing Enzymeâ€Controlled Product Divergence in Calbistrin Biosynthesis. Angewandte Chemie - International Edition, 2021, 60, 8851-8858.	7.2	14
18	Anti-Vpr activities of sesqui- and diterpenoids from the roots and rhizomes of Kaempferia candida. Journal of Natural Medicines, 2021, 75, 489-498.	1.1	3

#	Article	IF	CITATIONS
19	Innenrücktitelbild: One Polyketide Synthase, Two Distinct Products: <i>Trans</i> ÀActing Enzymeâ€Controlled Product Divergence in Calbistrin Biosynthesis (Angew. Chem. 16/2021). Angewandte Chemie, 2021, 133, 9227-9227.	1.6	0
20	One Polyketide Synthase, Two Distinct Products: Trans â€Acting Enzymeâ€Controlled Product Divergence in Calbistrin Biosynthesis. Angewandte Chemie, 2021, 133, 8933-8940.	1.6	0
21	Novel Cyclohexyl Meroterpenes Produced by Combinatorial Biosynthesis. Chemical and Pharmaceutical Bulletin, 2021, 69, 444-446.	0.6	4
22	Extensive expansion of the chemical diversity of fusidane-type antibiotics using a stochastic combinational strategy. Acta Pharmaceutica Sinica B, 2021, 11, 1676-1685.	5.7	9
23	Shanpanootols A-F, diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their Vpr inhibitory activities. Fìtoterapìâ, 2021, 151, 104870.	1.1	8
24	Microbial soluble aromatic prenyltransferases for engineered biosynthesis. Synthetic and Systems Biotechnology, 2021, 6, 51-62.	1.8	7
25	Aziridine Formation by a Fe ^{II} /αâ€Ketoglutarate Dependent Oxygenase and 2â€Aminoisobutyrate Biosynthesis in Fungi. Angewandte Chemie, 2021, 133, 15961-15965.	1.6	7
26	Enzymology and biosynthesis of the orsellinic acid derived medicinal meroterpenoids. Current Opinion in Biotechnology, 2021, 69, 52-59.	3.3	10
27	Natural Products from Nocardia and Their Role in Pathogenicity. Microbial Physiology, 2021, 31, 217-232.	1.1	14
28	Reconstitution of Polyketide-Derived Meroterpenoid Biosynthetic Pathway in Aspergillus oryzae. Journal of Fungi (Basel, Switzerland), 2021, 7, 486.	1.5	13
29	Aziridine Formation by a Fe ^{II} /αâ€Ketoglutarate Dependent Oxygenase and 2â€Aminoisobutyrate Biosynthesis in Fungi. Angewandte Chemie - International Edition, 2021, 60, 15827-15831.	7.2	24
30	Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angewandte Chemie - International Edition, 2021, 60, 19458-19465.	7.2	10
31	Pyrrolactams from Marine Sponge <i>Stylissa massa</i> Collected from Myanmar and Their Anti-Vpr Activities. Chemical and Pharmaceutical Bulletin, 2021, 69, 702-705.	0.6	2
32	Structural Basis for Isomerization Reactions in Fungal Tetrahydroxanthone Biosynthesis and Diversification. Angewandte Chemie, 2021, 133, 19607-19614.	1.6	3
33	Molecular insights into the endoperoxide formation by Fe(II)/ \hat{l} ±-KG-dependent oxygenase Nvfl. Nature Communications, 2021, 12, 4417.	5.8	31
34	A New Monoterpene from the Rhizomes of Alpinia galanga and Its Antiâ€Vpr Activity. Chemistry and Biodiversity, 2021, 18, e2100401.	1.0	2
35	Insights into phosphatase-activated chemical defense in a marine sponge holobiont. RSC Chemical Biology, 2021, 2, 1600-1607.	2.0	4
36	Stereodivergent Nitrocyclopropane Formation during Biosynthesis of Belactosins and Hormaomycins. Journal of the American Chemical Society, 2021, 143, 18413-18418.	6.6	30

#	Article	IF	Citations
37	C-Glycoside metabolism in the gut and in nature: Identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes. Nature Communications, 2021, 12, 6294.	5.8	25
38	Heterodimeric Non-heme Iron Enzymes in Fungal Meroterpenoid Biosynthesis. Journal of the American Chemical Society, 2021, 143, 21425-21432.	6.6	20
39	β-NAD as a building block in natural product biosynthesis. Nature, 2021, 600, 754-758.	13.7	33
40	Fungal Meroterpenoids. , 2020, , 445-478.		13
41	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie - International Edition, 2020, 59, 3988-3993.	7.2	27
42	Exploiting a C–N Bond Forming Cytochromeâ€P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie, 2020, 132, 4017-4022.	1.6	4
43	Anti-Vpr activities of homodrimane sesquiterpenoids and labdane diterpenoids from Globba sherwoodiana rhizomes. Fìtoterapì¢, 2020, 146, 104705.	1.1	4
44	Total Synthesis and Structural Revision of Kasumigamide, and Identification of a New Analogue. ChemBioChem, 2020, 21, 3329-3332.	1.3	8
45	Frontispiece: Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
46	Discovery of the cryptic function of terpene cyclases as aromatic prenyltransferases. Nature Communications, 2020, 11, 3958.	5.8	22
47	Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nature Chemistry, 2020, 12, 869-877.	6.6	37
48	Deciphering the Biosynthetic Mechanism of Pelletierine in <i>Lycopodium</i> Alkaloid Biosynthesis. Organic Letters, 2020, 22, 8725-8729.	2.4	14
49	Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angewandte Chemie, 2020, 132, 23980-23989.	1.6	9
50	Exploiting the Potential of Meroterpenoid Cyclases to Expand the Chemical Space of Fungal Meroterpenoids. Angewandte Chemie - International Edition, 2020, 59, 23772-23781.	7.2	28
51	Biosynthesis of Biscognienyneâ€B Involving a Cytochrome P450â€Dependent Alkynylation. Angewandte Chemie, 2020, 132, 13633-13638.	1.6	7
52	Biosynthesis of Biscognienyneâ€B Involving a Cytochrome P450â€Dependent Alkynylation. Angewandte Chemie - International Edition, 2020, 59, 13531-13536.	7.2	29
53	Heterochiral coupling in non-ribosomal peptide macrolactamization. Nature Catalysis, 2020, 3, 507-515.	16.1	18
54	Molecular Basis for Sesterterpene Diversity Produced by Plant Terpene Synthases. Plant Communications, 2020, 1, 100051.	3.6	17

#	Article	IF	CITATIONS
55	Structural Diversification of Andiconin-Derived Natural Products by α-Ketoglutarate-Dependent Dioxygenases. Organic Letters, 2020, 22, 4311-4315.	2.4	16
56	Comparative Genomics and Metabolomics in the Genus Nocardia. MSystems, 2020, 5, .	1.7	39
57	Biosynthesis of medicinally important plant metabolites by unusual type III polyketide synthases. Journal of Natural Medicines, 2020, 74, 639-646.	1.1	18
58	Sporormielones A–E, bioactive novel C–C coupled orsellinic acid derivative dimers, and their biosynthetic origin. Chemical Communications, 2020, 56, 4607-4610.	2.2	16
59	Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications, 2020, 11, 1473.	5.8	27
60	New Nocobactin Derivatives with Antimuscarinic Activity, Terpenibactins A–C, Revealed by Genome Mining of <i>Nocardia terpenica</i> IFM 0406. ChemBioChem, 2020, 21, 2205-2213.	1.3	13
61	Frontispiz: Exploiting a C–N Bond Forming Cytochrome P450 Monooxygenase for C–S Bond Formation. Angewandte Chemie, 2020, 132, .	1.6	0
62	Three new quassinoids isolated from the wood of Picrasma javanica and their anti-Vpr activities. Journal of Natural Medicines, 2020, 74, 571-578.	1,1	12
63	Nonheme Iron- and 2-Oxoglutarate-Dependent Dioxygenases in Fungal Meroterpenoid Biosynthesis. Chemical and Pharmaceutical Bulletin, 2020, 68, 823-831.	0.6	12
64	Sesterterpenoids. Progress in the Chemistry of Organic Natural Products, 2020, 111, 1-79.	0.8	1
65	Structural Elucidation of Tenebrathin: Cytotoxic C-5-Substituted Î ³ -Pyrone with a Nitroaryl Side Chain from <i>Streptoalloteichus tenebrarius</i>). Organic Letters, 2019, 21, 6519-6522.	2.4	6
66	Inherent atomic mobility changes in carbocation intermediates during the sesterterpene cyclization cascade. Beilstein Journal of Organic Chemistry, 2019, 15, 1890-1897.	1.3	6
67	Identification of Novel î±-Pyrones from <i>Conexibacter woesei</i> Serving as Sulfate Shuttles. ACS Chemical Biology, 2019, 14, 1972-1980.	1.6	4
68	Beijinchromes A–D, Novel Aromatic Compounds Isolated from <i>Nocardia beijingensis</i> NBRC 16342. Chemical and Pharmaceutical Bulletin, 2019, 67, 775-777.	0.6	0
69	Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis. Beilstein Journal of Organic Chemistry, 2019, 15, 1545-1551.	1.3	10
70	Biomimetic Synthesis of Meroterpenoids by Dearomatizationâ€Driven Polycyclization. Angewandte Chemie - International Edition, 2019, 58, 16141-16146.	7.2	26
71	Biomimetic Synthesis of Meroterpenoids by Dearomatizationâ€Driven Polycyclization. Angewandte Chemie, 2019, 131, 16287-16292.	1.6	7
72	How structural subtleties lead to molecular diversity for the type III polyketide synthases. Journal of Biological Chemistry, 2019, 294, 15121-15136.	1.6	53

#	Article	IF	Citations
73	Viral protein R inhibitors from Swertia chirata of Myanmar. Journal of Bioscience and Bioengineering, 2019, 128, 445-449.	1.1	25
74	Biosynthetic reconstitution of deoxysugar phosphoramidate metalloprotease inhibitors using an N–P-bond-forming kinase. Chemical Science, 2019, 10, 4486-4490.	3.7	7
75	Multidomain P450 Epoxidase and a Terpene Cyclase from the Ascochlorin Biosynthetic Pathway in <i>Fusarium i> sp Organic Letters, 2019, 21, 2330-2334.</i>	2.4	21
76	A New Tetrahydrofuran Lignan from Premna serratifolia Wood. Natural Product Communications, 2019, 14, 1934578X1901400.	0.2	0
77	Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Natural Product Reports, 2019, 36, 1654-1686.	5.2	24
78	Complete biosynthetic pathways of ascofuranone and ascochlorin in <i>Acremonium egyptiacum</i> Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8269-8274.	3.3	63
79	Bis-iridoid and iridoid glycosides: Viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fìtoterapìâ, 2019, 134, 101-107.	1.1	29
80	(+)- and (â^')-Preuisolactone A: A Pair of Caged Norsesquiterpenoidal Enantiomers with a Tricyclo[4.4.0 ^{1,6} .0 ^{2,8}]decane Carbon Skeleton from the Endophytic Fungus <i>Preussia isomera</i> . Organic Letters, 2019, 21, 1078-1081.	2.4	33
81	Introduction to the special issue: "Natural Product Discovery and Development in the Genomic Era: 2019― Journal of Industrial Microbiology and Biotechnology, 2019, 46, 249-249.	1.4	1
82	Molecular basis for the P450-catalyzed C–N bond formation in indolactam biosynthesis. Nature Chemical Biology, 2019, 15, 1206-1213.	3.9	37
83	Lignans with melanogenesis effects from Premna serratifolia wood. Fìtoterapìâ, 2019, 133, 35-42.	1.1	11
84	Dinorcassane Diterpenoid from <i>Boesenbergia rotunda</i> Rhizomes Collected in Lower Myanmar. Chemistry and Biodiversity, 2019, 16, e1800657.	1.0	4
85	Aminoacyl sulfonamide assembly in SB-203208 biosynthesis. Nature Communications, 2019, 10, 184.	5.8	37
86	Biosynthesis of clinically used antibiotic fusidic acid and identification of two short-chain dehydrogenase/reductases with converse stereoselectivity. Acta Pharmaceutica Sinica B, 2019, 9, 433-442.	5 . 7	28
87	Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 363-374.	1.4	55
88	Unique chemistry of non-heme iron enzymes in fungal biosynthetic pathways. Natural Product Reports, 2018, 35, 633-645.	5.2	55
89	Molecular Insight into the Mg ²⁺ â€Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angewandte Chemie - International Edition, 2018, 57, 6810-6813.	7.2	16
90	Chimeric Terpene Synthases Possessing both Terpene Cyclization and Prenyltransfer Activities. ChemBioChem, 2018, 19, 1106-1114.	1.3	56

#	Article	IF	Citations
91	A Tryptophan Prenyltransferase with Broad Substrate Tolerance from <i>Bacillus subtilis </i> subsp. <i>natto </i> . ChemBioChem, 2018, 19, 1396-1399.	1.3	6
92	Characterization of the Actinonin Biosynthetic Gene Cluster. ChemBioChem, 2018, 19, 1189-1195.	1.3	8
93	Structure function and engineering of multifunctional non-heme iron dependent oxygenases in fungal meroterpenoid biosynthesis. Nature Communications, 2018, 9, 104.	5.8	58
94	Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3. Angewandte Chemie, 2018, 130, 569-572.	1.6	3
95	Two new pyrrolo-2-aminoimidazoles from a Myanmarese marine sponge, Clathria prolifera. Journal of Natural Medicines, 2018, 72, 803-807.	1.1	9
96	Tetrahydrofuran lignans: Melanogenesis inhibitors from Premna integrifolia wood collected in Myanmar. Fìtoterapìâ, 2018, 127, 308-313.	1.1	14
97	Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. Journal of Antibiotics, 2018, 71, 653-657.	1.0	26
98	Two Distinct Substrate Binding Modes for the Normal and Reverse Prenylation of Hapalindoles by the Prenyltransferase AmbP3. Angewandte Chemie - International Edition, 2018, 57, 560-563.	7.2	23
99	Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type. Angewandte Chemie, 2018, 130, 14968-14973.	1.6	1
100	Elucidation and Heterologous Reconstitution of Chrodrimanin B Biosynthesis. Organic Letters, 2018, 20, 7504-7508.	2.4	42
101	Computational Studies on Biosynthetic Carbocation Rearrangements Leading to Quiannulatene: Initial Conformation Regulates Biosynthetic Route, Stereochemistry, and Skeleton Type. Angewandte Chemie - International Edition, 2018, 57, 14752-14757.	7.2	24
102	Crystalline Sponge Method Enabled the Investigation of a Prenyltransferase-terpene Synthase Chimeric Enzyme, Whose Product Exhibits Broadened NMR Signals. Organic Letters, 2018, 20, 5606-5609.	2.4	41
103	Reprogramming of the antimycin NRPS-PKS assembly lines inspired by gene evolution. Nature Communications, 2018, 9, 3534.	5.8	47
104	Hinduchelins A–D, Noncytotoxic Catechol Derivatives from Streptoalloteichus hindustanus. Journal of Natural Products, 2018, 81, 1493-1496.	1.5	4
105	Biosynthesis of the teleocidin-type terpenoid indole alkaloids. Organic and Biomolecular Chemistry, 2018, 16, 4746-4752.	1.5	33
106	Structural and Computational Bases for Dramatic Skeletal Rearrangement in Anditomin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 9743-9750.	6.6	43
107	Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nature Communications, 2018, 9, 2587.	5.8	85
108	Biosynthetic pathway for furanosteroid demethoxyviridin and identification of an unusual pregnane side-chain cleavage. Nature Communications, 2018, 9, 1838.	5.8	35

#	Article	IF	Citations
109	Catenulobactins A and B, Heterocyclic Peptides from Culturing <i>Catenuloplanes</i> sp. with a Mycolic Acid-Containing Bacterium. Journal of Natural Products, 2018, 81, 2106-2110.	1.5	26
110	Mirilactams C–E, Novel Polycyclic Macrolactams Isolated from Combined-Culture of <i>Actinosynnema mirum</i> NBRC 14064 and Mycolic Acid-Containing Bacterium. Chemical and Pharmaceutical Bulletin, 2018, 66, 660-667.	0.6	19
111	Biosynthetic studies on teleocidins in Streptomyces. Journal of Antibiotics, 2018, 71, 763-768.	1.0	14
112	Molecular Insight into the Mg ²⁺ â€Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angewandte Chemie, 2018, 130, 6926-6929.	1.6	0
113	Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angewandte Chemie - International Edition, 2017, 56, 1740-1745.	7.2	103
114	Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angewandte Chemie, 2017, 129, 1766-1771.	1.6	3
115	Frontispiece: Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angewandte Chemie - International Edition, 2017, 56, .	7.2	O
116	2-Alkylquinolone alkaloid biosynthesis in the medicinal plant Evodia rutaecarpa involves collaboration of two novel type III polyketide synthases. Journal of Biological Chemistry, 2017, 292, 9117-9135.	1.6	14
117	Biosynthesis of the Î²â€Łactone Proteasome Inhibitors Belactosin and Cystargolide. Angewandte Chemie - International Edition, 2017, 56, 6665-6668.	7.2	35
118	Combinatorial Biosynthesis of (+)-Daurichromenic Acid and Its Halogenated Analogue. Organic Letters, 2017, 19, 3183-3186.	2.4	24
119	Identification of Pyridinium with Three Indole Moieties as an Antimicrobial Agent. Journal of Natural Products, 2017, 80, 1205-1209.	1.5	15
120	3,5-Dimethylorsellinic Acid Derived Meroterpenoids from <i>Penicillium chrysogenum</i> MT-12, an Endophytic Fungus Isolated from <i>Huperzia serrata</i> Journal of Natural Products, 2017, 80, 2699-2707.	1.5	48
121	Labdane diterpenoids from Curcuma amada rhizomes collected in Myanmar and their antiproliferative activities. Fìtoterapìâ, 2017, 122, 34-39.	1.1	20
122	Identification of Chimeric \hat{l} ± \hat{l} 2 \hat{l} 3 Diterpene Synthases Possessing both Typeâ€II Terpene Cyclase and Prenyltransferase Activities. ChemBioChem, 2017, 18, 2104-2109.	1.3	15
123	Mycolic Acid Containing Bacterium Stimulates Tandem Cyclization of Polyene Macrolactam in a Lake Sediment Derived Rare Actinomycete. Organic Letters, 2017, 19, 4992-4995.	2.4	42
124	Mechanistic Characterization of Two Chimeric Sesterterpene Synthases from <i>Penicillium</i> Chemistry - A European Journal, 2017, 23, 10053-10057.	1.7	64
125	Molecular basis for the unusual ring reconstruction in fungal meroterpenoid biogenesis. Nature Chemical Biology, 2017, 13, 1066-1073.	3.9	33
126	Frontispiz: Characterization of Giant Modular PKSs Provides Insight into Genetic Mechanism for Structural Diversification of Aminopolyol Polyketides. Angewandte Chemie, 2017, 129, .	1.6	0

#	Article	IF	Citations
127	Biosynthesis of helvolic acid and identification of an unusual C-4-demethylation process distinct from sterol biosynthesis. Nature Communications, 2017, 8, 1644.	5.8	67
128	Identification and Characterization of Daurichromenic Acid Synthase Active in Anti-HIV Biosynthesis. Plant Physiology, 2017, 174, 2213-2230.	2.3	25
129	Naturally occurring Vpr inhibitors from medicinal plants of Myanmar. Journal of Natural Medicines, 2017, 71, 579-589.	1.1	23
130	Warhead biosynthesis and the origin of structural diversity in hydroxamate metalloproteinase inhibitors. Nature Communications, 2017, 8, 1965.	5.8	32
131	Posttranslational isoprenylation of tryptophan in bacteria. Beilstein Journal of Organic Chemistry, 2017, 13, 338-346.	1.3	12
132	Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by †Entotheonella'. PLoS ONE, 2016, 11, e0164468.	1.1	36
133	Effective Production of Aromatic Polyketides in <i>Streptomyces</i> using a Combined-Culture Method. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	2
134	An Unusual Chimeric Diterpene Synthase from <i>Emericella variecolor</i> and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping. Angewandte Chemie, 2016, 128, 1690-1693.	1.6	37
135	An Unusual Chimeric Diterpene Synthase from <i>Emericella variecolor</i> and Its Functional Conversion into a Sesterterpene Synthase by Domain Swapping. Angewandte Chemie - International Edition, 2016, 55, 1658-1661.	7.2	106
136	Epoxomicin and Eponemycin Biosynthesis Involves <i>gem</i> å€Dimethylation and an Acylâ€CoA Dehydrogenaseâ€Like Enzyme. ChemBioChem, 2016, 17, 792-798.	1.3	18
137	Structural Diversification of Lyngbyatoxinâ€A by Hostâ€Dependent Heterologous Expression of the <i>tleABC</i> Biosynthetic Gene Cluster. ChemBioChem, 2016, 17, 1407-1411.	1.3	13
138	Astellifadiene: Structure Determination by NMR Spectroscopy and Crystalline Sponge Method, and Elucidation of its Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 5785-5788.	7. 2	138
139	Structural basis for olivetolic acid formation by a polyketide cyclase from <i>Cannabis sativa</i> FEBS Journal, 2016, 283, 1088-1106.	2.2	33
140	Quassinoids: Viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4620-4624.	1.0	24
141	Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in <i>Penicillium brasilianum</i>). Journal of the American Chemical Society, 2016, 138, 12671-12677.	6.6	90
142	Engineering of <i>Candida glabrata</i> Ketoreductase 1 for Asymmetric Reduction of \hat{l}_{\pm} -Halo Ketones. ACS Catalysis, 2016, 6, 6135-6140.	5.5	54
143	Insight into the aroma profile of Bulgarian tobacco absolute oil. Industrial Crops and Products, 2016, 94, 226-232.	2.5	15
144	Sulfoureido Lipopeptides from the Marine Sponge <i>Discodermia kiiensis</i> . Journal of Natural Products, 2016, 79, 2418-2422.	1.5	8

#	Article	IF	CITATIONS
145	Stereospecific prenylation of tryptophan by a cyanobacterial post-translational modification enzyme. Organic and Biomolecular Chemistry, 2016, 14, 9639-9644.	1.5	23
146	Genome-Based Discovery of an Unprecedented Cyclization Mode in Fungal Sesterterpenoid Biosynthesis. Journal of the American Chemical Society, 2016, 138, 10011-10018.	6.6	105
147	Structural Insight into the Enzymatic Formation of Bacterial Stilbene. Cell Chemical Biology, 2016, 23, 1468-1479.	2.5	26
148	Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases. Nature Communications, 2016, 7, 10849.	5.8	51
149	Biosynthesis of LLâ€Z1272β: Discovery of a New Member of NRPSâ€like Enzymes for Arylâ€Aldehyde Formation. ChemBioChem, 2016, 17, 904-907.	1.3	59
150	Astellifadiene: Structure Determination by NMR Spectroscopy and Crystalline Sponge Method, and Elucidation of its Biosynthesis. Angewandte Chemie, 2016, 128, 5879-5882.	1.6	46
151	Cytochrome P450 for Citreohybridonol Synthesis: Oxidative Derivatization of the Andrastin Scaffold. Organic Letters, 2016, 18, 296-299.	2.4	31
152	Picrajavanicins H–M, new quassinoids from Picrasma javanica collected in Myanmar and their antiproliferative activities. Tetrahedron, 2016, 72, 746-752.	1.0	20
153	Calyculin: Nature's way of making the sponge-derived cytotoxin. Natural Product Reports, 2016, 33, 751-760.	5.2	25
154	Isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their Vpr inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1789-1793.	1.0	39
155	Unusual chemistries in fungal meroterpenoid biosynthesis. Current Opinion in Chemical Biology, 2016, 31, 1-7.	2.8	64
156	Biosynthesis of fungal meroterpenoids. Natural Product Reports, 2016, 33, 26-53.	5.2	305
157	Expression, purification and crystallization of a plant polyketide cyclase from <i>Cannabis sativa</i> Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1470-1474.	0.4	6
158	Rational Control of Polyketide Extender Units by Structureâ€Based Engineering of a Crotonyl oA Carboxylase/Reductase in Antimycin Biosynthesis. Angewandte Chemie - International Edition, 2015, 54, 13462-13465.	7.2	26
159	UNLOCKING "SILENT―GENES VIA COMBINE CULTURE–AN ALTERNATIVE GATEWAY TO NATURAL PRODUC DISCOVERY. Jurnal Teknologi (Sciences and Engineering), 2015, 77, .	آج 0.3	O
160	Cytotoxic Cyclic Peptides from the Marine Sponges. , 2015, , 113-144.		2
161	Kaempulchraols Iâ \in O: new isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their antiproliferative activity. Tetrahedron, 2015, 71, 4707-4713.	1.0	35
162	Structural Basis for the Formation of Acylalkylpyrones from Two \hat{I}^2 -Ketoacyl Units by the Fungal Type III Polyketide Synthase CsyB. Journal of Biological Chemistry, 2015, 290, 5214-5225.	1.6	27

#	Article	IF	Citations
163	Uncovering the Unusual D-Ring Construction in Terretonin Biosynthesis by Collaboration of a Multifunctional Cytochrome P450 and a Unique Isomerase. Journal of the American Chemical Society, 2015, 137, 3393-3401.	6.6	95
164	Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes. Molecular BioSystems, 2015, 11, 1290-1294.	2.9	7
165	Structural Basis for \hat{l}^2 -Carboline Alkaloid Production by the Microbial Homodimeric Enzyme McbB. Chemistry and Biology, 2015, 22, 898-906.	6.2	38
166	Kaempulchraols A–H, Diterpenoids from the Rhizomes of <i>Kaempferia pulchra</i> Collected in Myanmar. Journal of Natural Products, 2015, 78, 1113-1118.	1.5	39
167	Chojalactones A–C, Cytotoxic Butanolides Isolated from <i>Streptomyces</i> sp. Cultivated with Mycolic Acid Containing Bacterium. Organic Letters, 2015, 17, 1501-1504.	2.4	57
168	Minimum Information about a Biosynthetic Gene cluster. Nature Chemical Biology, 2015, 11, 625-631.	3.9	715
169	Dietziamides, novel tetramic acid dimers from Dietzia timorensis MZ-3 with antioxidative activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3953-3955.	1.0	6
170	Molecular Basis for Stellatic Acid Biosynthesis: A Genome Mining Approach for Discovery of Sesterterpene Synthases. Organic Letters, 2015, 17, 4644-4647.	2.4	79
171	Kaempulchraols P–T, Diterpenoids from <i>Kaempferia pulchra</i> Rhizomes Collected in Myanmar. Journal of Natural Products, 2015, 78, 2306-2309.	1.5	22
172	Niizalactams A–C, Multicyclic Macrolactams Isolated from Combined Culture of <i>Streptomyces</i> with Mycolic Acid-Containing Bacterium. Journal of Natural Products, 2015, 78, 3011-3017.	1.5	62
173	Picrajavanicins A–G, Quassinoids from <i>Picrasma javanica</i> Collected in Myanmar. Journal of Natural Products, 2015, 78, 3024-3030.	1.5	20
174	Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. Journal of Antibiotics, 2015, 68, 342-344.	1.0	52
175	Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves. Phytochemistry, 2015, 113, 183-194.	1.4	28
176	Diversity of ABBA Prenyltransferases in Marine Streptomyces sp. CNQ-509: Promiscuous Enzymes for the Biosynthesis of Mixed Terpenoid Compounds. PLoS ONE, 2015, 10, e0143237.	1.1	27
177	Meroterpenoids. Fungal Biology, 2014, , 289-301.	0.3	3
178	Expression, purification and crystallization of a fungal type III polyketide synthase that produces the csypyrones. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 730-733.	0.4	3
179	Crystallization and preliminary X-ray diffraction analysis of AntE, a crotonyl-CoA carboxylase/reductase from <i>Streptomyces</i> Sp. NRRL 2288. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 734-737.	0.4	3
180	An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature, 2014, 506, 58-62.	13.7	530

#	Article	IF	CITATIONS
181	Complete Biosynthetic Pathway of Anditomin: Nature's Sophisticated Synthetic Route to a Complex Fungal Meroterpenoid. Journal of the American Chemical Society, 2014, 136, 15326-15336.	6.6	157
182	Phosphocalyculin C as a pyrophosphate protoxin of calyculin C in the marine sponge Discodermia calyx. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5150-5153.	1.0	12
183	Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nature Chemical Biology, 2014, 10, 648-655.	3.9	114
184	Revised Structure of Cyclolithistide A, a Cyclic Depsipeptide from the Marine Sponge <i>Discodermia japonica</i> . Journal of Natural Products, 2014, 77, 154-158.	1.5	16
185	Lipodiscamides A–C, New Cytotoxic Lipopeptides from <i>Discodermia kiiensis</i> . Organic Letters, 2014, 16, 3256-3259.	2.4	14
186	A Methyltransferase Initiates Terpene Cyclization in Teleocidin B Biosynthesis. Journal of the American Chemical Society, 2014, 136, 9910-9913.	6.6	70
187	Three Acyltetronic Acid Derivatives: Noncanonical Cryptic Polyketides from <i>Aspergillus niger</i> Identified by Genome Mining. ChemBioChem, 2014, 15, 1578-1583.	1.3	19
188	Spiro-Ring Formation is Catalyzed by a Multifunctional Dioxygenase in Austinol Biosynthesis. Journal of the American Chemical Society, 2013, 135, 10962-10965.	6.6	114
189	Reconstituted biosynthesis of fungal meroterpenoid andrastin A. Tetrahedron, 2013, 69, 8199-8204.	1.0	106
190	Cycloforskamide, a Cytotoxic Macrocyclic Peptide from the Sea Slug <i>Pleurobranchus forskalii</i> Journal of Natural Products, 2013, 76, 1388-1391.	1,5	22
191	A two-step sulfation in antibiotic biosynthesis requires a type III polyketide synthase. Nature Chemical Biology, 2013, 9, 610-615.	3.9	36
192	Replacement of a Quinone by a 5- <i>O</i> -Acetylhydroquinone Abolishes the Accidental Necrosis Inducing Effect while Preserving the Apoptosis-Inducing Effect of Renieramycin M on Lung Cancer Cells. Journal of Natural Products, 2013, 76, 1468-1474.	1.5	9
193	Allos-hemicalyculin A, a photochemically converted calyculin from the marine sponge Discodermia calyx. Tetrahedron Letters, 2013, 54, 114-116.	0.7	3
194	Induced biosyntheses of a novel butyrophenone and two aromatic polyketides in the plant pathogen Stagonospora nodorum. Natural Products and Bioprospecting, 2013, 3, 141-144.	2.0	23
195	Indole–porphyrin hybrids produced by metagenomics. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3810-3813.	1.0	4
196	Induced production of novel prenyldepside and coumarins in endophytic fungi Pestalotiopsis acaciae. Tetrahedron Letters, 2013, 54, 5814-5817.	0.7	32
197	Multiplexing of Combinatorial Chemistry in Antimycin Biosynthesis: Expansion of Molecular Diversity and Utility. Angewandte Chemie - International Edition, 2013, 52, 12308-12312.	7.2	72
198	Pyranonigrin E: A PKSâ€NRPS Hybrid Metabolite from <i>Aspergillus niger</i> Identified by Genome Mining. ChemBioChem, 2013, 14, 2095-2099.	1.3	53

#	Article	IF	Citations
199	Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L Natural Products and Bioprospecting, 2013, 3, 20-23.	2.0	39
200	Ergot alkaloid from the sea slug Pleurobranchus forskalii. Toxicon, 2013, 72, 1-4.	0.8	14
201	Induced production of the novel glycolipid ustilagic acid C in the plant pathogen Ustilago maydis. Tetrahedron Letters, 2013, 54, 3655-3657.	0.7	14
202	Cyclodipeptides from Metagenomic Library of a Japanese Marine Sponge. Journal of the Brazilian Chemical Society, $2013, \ldots$	0.6	11
203	Cloning and Structure-Function Analyses of Quinolone- and Acridone-producing Novel Type III Polyketide Synthases from Citrus microcarpa. Journal of Biological Chemistry, 2013, 288, 28845-28858.	1.6	27
204	FK506 Maturation Involves a Cytochrome P450 Protein-Catalyzed Four-Electron C-9 Oxidation in Parallel with a C-31 <i>O</i> -Methylation. Journal of Bacteriology, 2013, 195, 1931-1939.	1.0	21
205	An HR-PKS stereo surprise. Nature Chemical Biology, 2012, 8, 322-323.	3.9	0
206	Biosynthetic Pathway for High Structural Diversity of a Common Dilactone Core in Antimycin Production. Organic Letters, 2012, 14, 4142-4145.	2.4	60
207	Molecular cloning and characterization of copper amine oxidase from Huperzia serrata. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5784-5790.	1.0	48
208	Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. Molecular BioSystems, 2012, 8, 2334.	2.9	19
209	A heptaketide naphthaldehyde produced by a polyketide synthase from Nectria haematococca. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4338-4340.	1.0	27
210	Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6397-6400.	1.0	66
211	Calyxamides A and B, Cytotoxic Cyclic Peptides from the Marine Sponge <i>Discodermia calyx</i> Journal of Natural Products, 2012, 75, 290-294.	1.5	55
212	Merochlorins A–D, Cyclic Meroterpenoid Antibiotics Biosynthesized in Divergent Pathways with Vanadium-Dependent Chloroperoxidases. Journal of the American Chemical Society, 2012, 134, 11988-11991.	6.6	181
213	Heterologously expressed \hat{l}^2 -hydroxyl fatty acids from a metagenomic library of a marine sponge. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7322-7325.	1.0	8
214	Engineering of Plant Type III Polyketide Synthases. Methods in Enzymology, 2012, 515, 337-358.	0.4	8
215	Labile natural products. MedChemComm, 2012, 3, 866.	3.5	4
216	Benzalacetone Synthase. Frontiers in Plant Science, 2012, 3, 57.	1.7	10

#	Article	IF	CITATIONS
217	Prenylation of a Nonaromatic Carbon of Indolylbutenone by a Fungal Indole Prenyltransferase. Organic Letters, 2012, 14, 3080-3083.	2.4	26
218	Identification of a Key Prenyltransferase Involved in Biosynthesis of the Most Abundant Fungal Meroterpenoids Derived from 3,5â€Dimethylorsellinic Acid ChemBioChem, 2012, 13, 1132-1135.	1.3	63
219	Terretonin Biosynthesis Requires Methylation as Essential Step for Cyclization. ChemBioChem, 2012, 13, 1738-1741.	1.3	80
220	Novel applications of plant polyketide synthases. Current Opinion in Chemical Biology, 2012, 16, 179-185.	2.8	24
221	Benzophenone synthase from Garcinia mangostana L. pericarps. Phytochemistry, 2012, 77, 60-69.	1.4	30
222	Expression, purification and crystallization of an indole prenyltransferase from Aspergillus fumigatus. Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 355-358.	0.7	4
223	Cytotoxic Tetramic Acid Derivative Produced by a Plant Type-III Polyketide Synthase. Journal of the American Chemical Society, 2011, 133, 4746-4749.	6.6	26
224	Molecular Cloning, Modeling, and Site-Directed Mutagenesis of Type III Polyketide Synthase from Sargassum binderi (Phaeophyta). Marine Biotechnology, 2011, 13, 845-856.	1.1	19
225	Crystallization and preliminary X-ray analysis of 4-coumarate:CoA ligase fromArabidopsis thaliana. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 409-411.	0.7	5
226	Enzymatic formation of an aromatic dodecaketide by engineered plant polyketide synthase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2083-2086.	1.0	15
227	Furan fatty acid as an anti-inflammatory component from the green-lipped mussel <i>Perna canaliculus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17533-17537.	3.3	100
228	Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13504-13509.	3.3	61
229	Structure-based engineering of benzalacetone synthase. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5099-5103.	1.0	6
230	Expression, purification and crystallization of a plant type III polyketide synthase that produces diarylheptanoids. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 948-950.	0.7	6
231	Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nature Chemistry, 2010, 2, 858-864.	6.6	178
232	Structural basis for the one-pot formation of the diarylheptanoid scaffold by curcuminoid synthase from <i>Oryza sativa</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19778-19783.	3.3	48
233	A structure-based mechanism for benzalacetone synthase from Rheum palmatum. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 669-673.	3.3	48
234	Plant Type III PKS. , 2010, , 171-225.		14

#	Article	IF	Citations
235	Bacterial Squalene Cyclase. , 2010, , 709-732.		2
236	Alkylresorcinol Synthases Expressed in <i>Sorghum bicolor</i> Root Hairs Play an Essential Role in the Biosynthesis of the Allelopathic Benzoquinone Sorgoleone Â. Plant Cell, 2010, 22, 867-887.	3.1	97
237	Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. Natural Product Reports, 2010, 27, 809.	5.2	260
238	Protostadienol synthase from Aspergillus fumigatus: Functional conversion into lanosterol synthase. Biochemical and Biophysical Research Communications, 2010, 391, 899-902.	1.0	17
239	Novel type III polyketide synthases from <i>Aloeâ€∫arborescens</i> . FEBS Journal, 2009, 276, 2391-2401.	2.2	45
240	Enzymatic formation of unnatural novel polyketide scaffolds by plant-specific type III polyketide synthase. Tetrahedron Letters, 2009, 50, 2150-2153.	0.7	5
241	Enzymatic Formation of Unnatural Novel Chalcone, Stilbene, and Benzophenone Scaffolds by Plant Type III Polyketide Synthase. Organic Letters, 2009, 11, 551-554.	2.4	33
242	Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach. Topics in Current Chemistry, 2009, 297, 45-66.	4.0	16
243	æ♥‰ ©ãfēfªã,±ã,¿ã,¤f‰å•̂æ^é…μç´ç"ç©¶ã®æœ€å‰ç∙š. Kagaku To Seibutsu, 2009, 47, 772-780.	0.0	0
244	Crystallization and preliminary crystallographic analysis of a plant type III polyketide synthase that produces benzalacetone. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 304-306.	0.7	6
245	Structure Function Analysis of Novel Type III Polyketide Synthases from Arabidopsis thaliana. Biological and Pharmaceutical Bulletin, 2008, 31, 2205-2210.	0.6	28
246	Engineering of Plant Polyketide Biosynthesis. Chemical and Pharmaceutical Bulletin, 2008, 56, 1505-1514.	0.6	32
247	Enzymatic Synthesis of Plant Polyketides. Current Organic Synthesis, 2008, 5, 250-266.	0.7	11
248	Engineering of Plant Polyketide Synthases. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2008, 66, 683-693.	0.0	3
249	Engineered Biosynthesis of Plant Polyketides: Chain Length Control in Novel Type III Polyketide Synthases. ACS Symposium Series, 2007, , 109-127.	0.5	2
250	Cloning and Functional Analysis of a Novel Aldo-Keto Reductase from Aloe arborescens. Biological and Pharmaceutical Bulletin, 2007, 30, 2262-2267.	0.6	13
251	Site-directed mutagenesis of conserved aromatic residues in rat squalene epoxidase. Biochemical and Biophysical Research Communications, 2007, 352, 259-263.	1.0	28
252	Enzymatic formation of unnatural cytokinin analogs by adenylate isopentenyltransferase from mulberry. Biochemical and Biophysical Research Communications, 2007, 355, 795-800.	1.0	18

#	Article	lF	Citations
253	Structure-Based Engineering of a Plant Type III Polyketide Synthase:Â Formation of an Unnatural Nonaketide Naphthopyrone. Journal of the American Chemical Society, 2007, 129, 5976-5980.	6.6	28
254	Enzymatic synthesis of cyclic triterpenes. Natural Product Reports, 2007, 24, 1311.	5.2	210
255	Structure function analysis of benzalacetone synthase from Rheum palmatum. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3161-3166.	1.0	26
256	Structural Insight into Chain-Length Control and Product Specificity of Pentaketide Chromone Synthase from Aloe arborescens. Chemistry and Biology, 2007, 14, 359-369.	6.2	70
257	Crystallization and preliminary crystallographic analysis of an acridone-producing novel multifunctional type III polyketide synthase fromHuperzia serrata. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 576-578.	0.7	12
258	Crystallization and preliminary crystallographic analysis of an octaketide-producing plant type III polyketide synthase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 947-949.	0.7	9
259	An acridone-producing novel multifunctional type III polyketide synthase from Huperzia serrata. FEBS Journal, 2007, 274, 1073-1082.	2.2	53
260	Enzymatic Formation of Quinolone Alkaloids by a Plant Type III Polyketide Synthase. Organic Letters, 2006, 8, 6063-6065.	2.4	35
261	Engineered Biosynthesis of Plant Polyketides:  Manipulation of Chalcone Synthase. Organic Letters, 2006, 8, 499-502.	2.4	37
262	Crystallization and preliminary crystallographic analysis of a novel plant type III polyketide synthase that produces pentaketide chromone. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 899-901.	0.7	6
263	Active site residues governing substrate selectivity and polyketide chain length in aloesone synthase. FEBS Journal, 2006, 273, 208-218.	2.2	37
264	Analysis of agaritine in mushrooms and in agaritine-administered mice using liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 834, 55-61.	1.2	12
265	Enzymatic formation of pyrrole-containing novel cyclic polyprenoids by bacterial squalene:hopene cyclase. Tetrahedron Letters, 2006, 47, 3085-3089.	0.7	15
266	Enzymatic formation of an unnatural methylated triketide by plant type III polyketide synthases. Tetrahedron Letters, 2006, 47, 8727-8730.	0.7	17
267	Determination of genotoxic phenylhydrazine agaritine in mushrooms using liquid chromatography–electrospray ionization tandem mass spectrometry. Food Additives and Contaminants, 2006, 23, 1179-1186.	2.0	14
268	Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. Journal of Clinical Investigation, 2006, 116, 395-404.	3.9	86
269	Chalcone synthase superfamily of type III polyketide synthases from rhubarb (Rheum palmatum). Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2005, 81, 434-440.	1.6	10
270	Enzymatic Formation of Indole-Containing Unnatural Cyclic Polyprenoids by Bacterial Squalene:Hopene Cyclase. Organic Letters, 2005, 7, 5873-5876.	2.4	29

#	Article	IF	CITATIONS
271	A Plant Type III Polyketide Synthase that Produces Pentaketide Chromone. Journal of the American Chemical Society, 2005, 127, 1362-1363.	6.6	99
272	Engineered Biosynthesis of Plant Polyketides:  Chain Length Control in an Octaketide-Producing Plant Type III Polyketide Synthase. Journal of the American Chemical Society, 2005, 127, 12709-12716.	6.6	143
273	Mechanism and Stereochemistry of Enzymatic Cyclization of 24,30-Bisnor-2,3-oxidosqualene by Recombinant \hat{l}^2 -Amyrin Synthase. Journal of the American Chemical Society, 2004, 126, 6880-6881.	6.6	21
274	The induction of human UDP-glucuronosyltransferase 1A1 mediated through a distal enhancer module by flavonoids and xenobiotics. Biochemical Pharmacology, 2004, 67, 989-1000.	2.0	106
275	Enzymatic cyclization of 26- and 27-methylidenesqualene to novel unnatural C31 polyprenoids by squalene:hopene cyclase. Tetrahedron Letters, 2004, 45, 3093-3096.	0.7	12
276	Enzymatic formation of an unnatural novel tetracyclic sesterterpene by \hat{l}^2 -amyrin synthase. Tetrahedron Letters, 2004, 45, 8299-8301.	0.7	15
277	Enzymatic formation of long-chain polyketide pyrones by plant type III polyketide synthases. Phytochemistry, 2004, 65, 2447-2453.	1.4	48
278	Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop (Humulus lupulus L.). Phytochemistry, 2004, 65, 2439-2446.	1.4	34
279	Enzymatic Reactions by Five Chalcone Synthase Homologs from Hop (Humulus lupulusL.). Bioscience, Biotechnology and Biochemistry, 2004, 68, 1142-1145.	0.6	35
280	1-Methylidenesqualene and 25-Methylidenesqualene as Active-Site Probes for Bacterial Squalene:Hopene Cyclase. Organic Letters, 2004, 6, 803-806.	2.4	18
281	Enzymatic Cyclization of 22,23-Dihydro-2,3-oxidosqualene into Euph-7-en-3 \hat{l}^2 -ol and Bacchar-12-en-3 \hat{l}^2 -ol by Recombinant \hat{l}^2 -Amyrin Synthase. Journal of the American Chemical Society, 2004, 126, 3426-3427.	6.6	22
282	Probing biosynthesis of plant polyketides with synthetic N-acetylcysteamine thioesters. Biochemical and Biophysical Research Communications, 2004, 325, 561-567.	1.0	44
283	The first plant type III polyketide synthase that catalyzes formation of aromatic heptaketide. FEBS Letters, 2004, 562, 171-176.	1.3	53
284	Enzymatic Formation of Unnatural Novel Polyketides from Alternate Starter and Nonphysiological Extension Substrate by Chalcone Synthase. Organic Letters, 2003, 5, 1277-1280.	2.4	30
285	Site-directed Mutagenesis of Benzalacetone Synthase. Journal of Biological Chemistry, 2003, 278, 25218-25226.	1.6	62
286	Enzymatic Formation of an Unnatural Hexacyclic C35Polyprenoid by Bacterial Squalene Cyclase. Journal of the American Chemical Society, 2002, 124, 14514-14515.	6.6	33
287	Enzymatic Formation of an Unnatural C6â^3C5Aromatic Polyketide by Plant Type III Polyketide Synthases. Organic Letters, 2002, 4, 3623-3626.	2.4	35
288	Green Tea Polyphenols as Potent Enhancers of Glucocorticoid-Induced Mouse Mammary Tumor Virus Gene Expression. Biochemical and Biophysical Research Communications, 2001, 281, 122-125.	1.0	12

#	Article	IF	CITATIONS
289	Ellagitannins and Hexahydroxydiphenoyl Esters as Inhibitors of Vertebrate Squalene Epoxidase. Journal of Natural Products, 2001, 64, 1010-1014.	1.5	25
290	Benzalacetone synthase. FEBS Journal, 2001, 268, 3354-3359.	0.2	116
291	Novel polyketides synthesized with a higher plant stilbene synthase. FEBS Journal, 2001, 268, 3759-3766.	0.2	67
292	Molecular cloning, expression, and site-directed mutations of oxidosqualene cyclase from Cephalosporium caerulens. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2001, 1522, 67-73.	2.4	13
293	Apoptosis-Inducing Activity of Lipid Derivatives of Gallic Acid Biological and Pharmaceutical Bulletin, 2000, 23, 1391-1394.	0.6	61
294	Inhibition of vertebrate squalene epoxidase by isoprenyl gallates and phenylalkyl gallates. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 2525-2528.	1.0	10
295	Galloyl Esters from Rhubarb are Potent Inhibitors of Squalene Epoxidase, a Key Enzyme in Cholesterol Biosynthesis. Planta Medica, 2000, 66, 753-756.	0.7	50
296	Green Tea Polyphenols: Novel and Potent Inhibitors of Squalene Epoxidase. Biochemical and Biophysical Research Communications, 2000, 268, 767-771.	1.0	131
297	Potent and Selective Inhibition of Squalene Epoxidase by Synthetic Galloyl Esters. Biochemical and Biophysical Research Communications, 2000, 270, 137-140.	1.0	45
298	Enzymatic Formation of Unnatural Aromatic Polyketides by Chalcone Synthase. Biochemical and Biophysical Research Communications, 2000, 279, 190-195.	1.0	69
299	Antioxidative galloyl esters as enzyme inhibitors ofp-hydroxybenzoate hydroxylase. FEBS Letters, 2000, 483, 131-134.	1.3	24
300	Substrate Specificity of Chalcone Synthase:  Enzymatic Formation of Unnatural Polyketides from Synthetic Cinnamoyl-CoA Analogues. Journal of the American Chemical Society, 2000, 122, 11242-11243.	6.6	72
301	Squalene Epoxidase and Oxidosqualene : Lanosterol Cyclase—Key Enzymes in Cholesterol Biosynthesis. , 1999, , 267-298.		28
302	The binding site for an inhibitor of squalene:hopene cyclase determined using photoaffinity labeling and molecular modeling. Chemistry and Biology, 1999, 6, 333-341.	6.2	17
303	Development of new cholesterol-lowering drugs. Drug Discovery Today, 1998, 3, 389-390.	3.2	12
304	Synthesis and enzymatic cyclization of (3S)11-fluoro-2,3-oxidosqualene. Tetrahedron Letters, 1998, 39, 957-960.	0.7	33
305	Synthesis and enzymatic cyclization of (3S)-14-fluoro-2,3-oxidosqualene. Tetrahedron Letters, 1998, 39, 9385-9388.	0.7	23
306	Mechanism-Based Inhibitors and Other Active-Site Targeted Inhibitors of Oxidosqualene Cyclase and Squalene Cyclase. Journal of Enzyme Inhibition and Medicinal Chemistry, 1998, 13, 385-398.	0.5	11

#	Article	IF	CITATIONS
307	Photoaffinity Labeling of Oxidosqualene Cyclase and Squalene Cyclase by a Benzophenone-Containing Inhibitorâ€. Biochemistry, 1998, 37, 5779-5784.	1.2	32
308	Inhibition Kinetics and Affinity Labeling of Bacterial Squalene:Hopene Cyclase by Thia-Substituted Analogues of 2,3-Oxidosqualeneâ€. Biochemistry, 1998, 37, 5981-5987.	1.2	7
309	Inactivation of Two Triterpene Cyclases by 18(E)-(3S)-29-Methylidene-2,3-oxidosqualene. Journal of Organic Chemistry, 1998, 63, 4872-4873.	1.7	14
310	Cyclization of (3S)29-Methylidene-2,3-oxidosqualene by Bacterial Squalene:Hopene Cyclase: Irreversible Enzyme Inactivation and Isolation of an Unnatural Dammarenoid. Journal of the American Chemical Society, 1997, 119, 11333-11334.	6.6	35
311	Synthesis and Inhibition Studies of Sulfur-Substituted Squalene Oxide Analogues as Mechanism-Based Inhibitors of 2,3-Oxidosqualeneâ°Lanosterol Cyclase. Journal of Medicinal Chemistry, 1997, 40, 201-209.	2.9	34
312	Mechanism-Based Active Site Modification of Oxidosqualene Cyclase by Tritium-Labeled 18-Thia-2,3-Oxidosqualene. Journal of the American Chemical Society, 1996, 118, 9180-9181.	6.6	26
313	Purification of pig and rat liver squalene epoxidase by affinity chromatography. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 481-486.	1.0	10
314	Identification of the active site of vertebrate oxidosqualene cyclase. Lipids, 1995, 30, 231-234.	0.7	56
315	A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends in Biochemical Sciences, 1994, 19, 157-158.	3.7	153
316	Inhibitors of squalene biosynthesis and metabolism. Natural Product Reports, 1994, 11, 279.	5. 2	107
317	Enzymic cyclization of 2,3-dihydrosqualene and squalene 2,3-epoxide by squalene cyclases: from pentacyclic to tetracyclic triterpenes. Journal of the Chemical Society Perkin Transactions 1, 1994, , 783.	0.9	44
318	Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chemical Reviews, 1993, 93, 2189-2206.	23.0	631
319	Affinity labeling of vertebrate oxidosqualene cyclases with a tritiated suicide substrate. Biochemical and Biophysical Research Communications, 1992, 187, 32-38.	1.0	44
320	Enyzmatic cyclization of 2,3-dihydrosqualene into euph-7-ene by a cell-free system from the protozoon Tetrahymena pyriformis. Journal of the Chemical Society Chemical Communications, 1991, , 902.	2.0	18
321	Purification of squalene-2,3-epoxide cyclases from cell suspension cultures of Rabdosia japonica Hara. FEBS Letters, 1989, 249, 100-104.	1.3	38
322	Structural basis for endoperoxide-forming oxygenases. Beilstein Journal of Organic Chemistry, 0, 18, 707-721.	1.3	4