Youngjun Yun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4138559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	27.8	1,588
2	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	31.5	736
3	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	26.0	421
4	Inkjet-printed stretchable and low voltage synaptic transistor array. Nature Communications, 2019, 10, 2676.	12.8	194
5	Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances, 2019, 5, eaav3097.	10.3	179
6	Strain-insensitive intrinsically stretchable transistors and circuits. Nature Electronics, 2021, 4, 143-150.	26.0	170
7	Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system. Science Advances, 2021, 7, .	10.3	144
8	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	12.8	106
9	Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers. Advanced Materials, 2019, 31, e1903912.	21.0	99
10	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	12.8	94
11	A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. Journal of the American Chemical Society, 2021, 143, 11679-11689.	13.7	65
12	Stretchable PPG sensor with light polarization for physical activity–permissible monitoring. Science Advances, 2022, 8, eabm3622.	10.3	31
13	Densely cross-linked polysiloxane dielectric for organic thin-film transistors with enhanced electrical stability. Journal of Materials Chemistry C, 2019, 7, 5821-5829.	5.5	16
14	Thiophene-Thiazole-Based Semiconducting Copolymers for High-Performance Polymer Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 38728-38736.	8.0	7
15	In-Depth Investigation of the Correlation between Organic Semiconductor Orientation and Energy-Level Alignment Using In Situ Photoelectron Spectroscopy. ACS Applied Materials & Interfaces, 2020, 12, 50628-50637.	8.0	5
16	Control of dielectric surface energy by dry surface treatment for high performance organic thin film transistor based on dibenzothiopheno[6,5- <i>b</i> :6′,5′- <i>f</i>]thieno[3,2- <i>b</i>]thiophene semiconductor. AIP Advances, 2020, 10, .	1.3	3
17	Dually crosslinkable SiO2@polysiloxane core–shell nanoparticles for flexible gate dielectric insulators. RSC Advances, 2017, 7, 17841-17847.	3.6	2
18	46â€3: <i>Invited Paper:</i> Skinâ€like Organic Optoelectronic System for Realâ€time Heart Rate Monitoring. Digest of Technical Papers SID International Symposium, 2022, 53, 585-588.	0.3	1