List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413833/publications.pdf Version: 2024-02-01

FRICA LUMINU

#	Article	IF	CITATIONS
1	Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. Science of the Total Environment, 2022, 822, 153640.	8.0	3
2	Diversity of Arbuscular Mycorrhizal Fungi in olive orchard soils in arid regions of Southern Tunisia. Arid Land Research and Management, 2022, 36, 411-427.	1.6	5
3	Metabarcoding of Soil Fungal Communities Associated with Alpine Field-Grown Saffron (Crocus) Tj ETQq1 1 0.78	4314 rgB1 3.5	$[] / Overlock _{13}$
4	Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. International Journal of Molecular Sciences, 2021, 22, 2887.	4.1	29
5	Arbuscular Mycorrhizal Fungi from Argentinean Highland Puna Soils Unveiled by Propagule Multiplication. Plants, 2021, 10, 1803.	3.5	9
6	Impact of land use history on the arbuscular mycorrhizal fungal diversity in arid soils of Argentinean farming fields. FEMS Microbiology Letters, 2020, 367, .	1.8	9
7	Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 2020, 96, .	2.7	28
8	Mining the Microbiome of Key Species from African Savanna Woodlands: Potential for Soil Health Improvement and Plant Growth Promotion. Microorganisms, 2020, 8, 1291.	3.6	11
9	Impact of an arbuscular mycorrhizal fungal inoculum and exogenous MeJA on fenugreek secondary metabolite production under water deficit. Environmental and Experimental Botany, 2020, 176, 104096.	4.2	23
10	Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. Journal of Fungi (Basel, Switzerland), 2020, 6, 80.	3.5	8
11	Effects of Different Microbial Inocula on Tomato Tolerance to Water Deficit. Agronomy, 2020, 10, 170.	3.0	36
12	High-Throughput DNA Sequence-Based Analysis of AMF Communities. Methods in Molecular Biology, 2020, 2146, 99-116.	0.9	2
13	Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation. Agronomy, 2019, 9, 232.	3.0	48
14	Glomalin gene as molecular marker for functional diversity of arbuscular mycorrhizal fungi in soil. Biology and Fertility of Soils, 2019, 55, 411-417.	4.3	21
15	Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy, 2019, 9, 12.	3.0	35
16	Focus on mycorrhizal symbioses. Applied Soil Ecology, 2018, 123, 299-304.	4.3	43
17	Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta, 2018, 247, 573-585.	3.2	62
18	Seasonal variation in winter wheat field soil arbuscular mycorrhizal fungus communities after non-mycorrhizal crop cultivation. Mycorrhiza, 2018, 28, 535-548.	2.8	16

#	Article	IF	CITATIONS
19	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	12.8	992
20	The last 50Âyears of climateâ€induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution, 2018, 8, 7401-7420.	1.9	18
21	Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Molecular Ecology, 2018, 27, 3671-3685.	3.9	33
22	Wild Camellia japonica specimens in the Shimane prefecture (Japan) host previously undescribed AMF diversity. Applied Soil Ecology, 2017, 115, 10-18.	4.3	11
23	Arbuscular mycorrhizal fungal community differences among European long-term observatories. Mycorrhiza, 2017, 27, 331-343.	2.8	14
24	AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis, 2017, 72, 73-80.	2.3	25
25	The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS ONE, 2017, 12, e0171866.	2.5	39
26	Insights On the Impact of Arbuscular Mycorrhizal Symbiosis On Tomato Tolerance to Water Stress. Plant Physiology, 2016, 171, pp.00307.2016.	4.8	227
27	Transfiguring biodegradation of frescoes in the Beata Vergine del Pilone Sanctuary (Italy): Microbial analysis and minero-chemical aspects. International Biodeterioration and Biodegradation, 2015, 98, 6-18.	3.9	10
28	Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé. Fungal Biology, 2015, 119, 518-527.	2.5	20
29	Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza, 2015, 25, 253-265.	2.8	25
30	Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Frontiers in Microbiology, 2015, 6, 1559.	3.5	543
31	Arbuscular Mycorrhizal Fungi and their Value for Ecosystem Management. , 2014, , .		22
32	Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Molecular Phylogenetics and Evolution, 2014, 75, 1-10.	2.7	13
33	Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Frontiers in Plant Science, 2013, 4, 135.	3.6	33
34	454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome. Diversity, 2013, 5, 73-98.	1.7	82
35	The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME Journal, 2012, 6, 136-145.	9.8	176
36	Discrimination of <i>Gigaspora</i> species by PCR specific primers and phylogenetic analysis. Mycotaxon, 2012, 118, 17-26.	0.3	1

#	Article	IF	CITATIONS
37	Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biology and Fertility of Soils, 2012, 48, 911-922.	4.3	95
38	Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds. PLoS ONE, 2012, 7, e34847.	2.5	194
39	SELECTION OF ARBUSCULAR MYCORRHIZAL FUNGAL ISOLATES FOR SUSTAINABLE FLORICULTURE. Acta Horticulturae, 2011, , 319-324.	0.2	1
40	Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. , 2011, 21, 1696-1707.		99
41	Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza, 2011, 21, 195-209.	2.8	55
42	Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a landâ€use gradient using a pyrosequencing approach. Environmental Microbiology, 2010, 12, 2165-2179.	3.8	313
43	Cohorts of arbuscular mycorrhizal fungi (AMF) in <i>Vitis vinifera</i> , a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2010, 2, 594-604.	2.4	77
44	The <i>ftsZ</i> Gene of the Endocellular Bacterium â€~ <i>Candidatus</i> Glomeribacter gigasporarum' Is Preferentially Expressed During the Symbiotic Phases of Its Host Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2009, 22, 302-310.	2.6	31
45	Simultaneous detection and quantification of the unculturable microbe <i>Candidatus</i> Glomeribacter gigasporarum inside its fungal host <i>Gigaspora margarita</i> . New Phytologist, 2008, 180, 248-257.	7.3	31
46	THE IMPACT OF TILLAGE PRACTICES ON ARBUSCULAR MYCORRHIZAL FUNGAL DIVERSITY IN SUBTROPICAL CROPS. , 2008, 18, 527-536.		172
47	Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. American Journal of Botany, 2007, 94, 1756-1777.	1.7	141
48	Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cellular Microbiology, 2007, 9, 1716-1729.	2.1	140
49	Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 2006, 8, 971-983.	3.8	109
50	Endobacteria or bacterial endosymbionts? To be or not to be. New Phytologist, 2006, 170, 205-208.	7.3	32
51	Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza, 2006, 16, 183-189.	2.8	57
52	Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores. Applied and Environmental Microbiology, 2004, 70, 3600-3608.	3.1	126
53	â€~Candidatus Glomeribacter gigasporarum' gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 121-124.	1.7	188
54	A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytologist, 2001, 152, 169-179.	7.3	25

#	Article	IF	CITATIONS
55	Detection and Identification of Bacterial Endosymbionts in Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae. Applied and Environmental Microbiology, 2000, 66, 4503-4509.	3.1	156
56	Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of <i>Frankia</i> culture collections. Canadian Journal of Botany, 1999, 77, 1261-1269.	1.1	6
57	The Nuclear Ribosomal DNA Intergenic Spacer as a Target Sequence To Study Intraspecific Diversity of the Ectomycorrhizal Basidiomycete <i>Hebeloma cylindrosporum</i> Directly on <i>Pinus</i> Root Systems. Applied and Environmental Microbiology, 1999, 65, 903-909.	3.1	51
58	Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of <i>Frankia</i> culture collections. Canadian Journal of Botany, 1999, 77, 1261-1269.	1.1	19
59	PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiology Ecology, 1996, 21, 303-311.	2.7	34
60	PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Applied and Environmental Microbiology, 1996, 62, 3026-3029.	3.1	29
61	PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiology Ecology, 1996, 21, 303-311.	2.7	1
62	Field performance of Alnus cordata loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biology and Biochemistry, 1994, 26, 659-661.	8.8	51
63	Botanica Applicata. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 521-530.	0.0	0