List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413833/publications.pdf Version: 2024-02-01

FRICA LUMINI

#	Article	IF	CITATIONS
1	Soil bacterial networks are less stable under drought than fungal networks. Nature Communications, 2018, 9, 3033.	12.8	992
2	Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Frontiers in Microbiology, 2015, 6, 1559.	3.5	543
3	Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a landâ€use gradient using a pyrosequencing approach. Environmental Microbiology, 2010, 12, 2165-2179.	3.8	313
4	Insights On the Impact of Arbuscular Mycorrhizal Symbiosis On Tomato Tolerance to Water Stress. Plant Physiology, 2016, 171, pp.00307.2016.	4.8	227
5	Unravelling Soil Fungal Communities from Different Mediterranean Land-Use Backgrounds. PLoS ONE, 2012, 7, e34847.	2.5	194
6	â€~Candidatus Glomeribacter gigasporarum' gen. nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 121-124.	1.7	188
7	The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME Journal, 2012, 6, 136-145.	9.8	176
8	THE IMPACT OF TILLAGE PRACTICES ON ARBUSCULAR MYCORRHIZAL FUNGAL DIVERSITY IN SUBTROPICAL CROPS. , 2008, 18, 527-536.		172
9	Detection and Identification of Bacterial Endosymbionts in Arbuscular Mycorrhizal Fungi Belonging to the Family Gigasporaceae. Applied and Environmental Microbiology, 2000, 66, 4503-4509.	3.1	156
10	Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. American Journal of Botany, 2007, 94, 1756-1777.	1.7	141
11	Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cellular Microbiology, 2007, 9, 1716-1729.	2.1	140
12	Vertical Transmission of Endobacteria in the Arbuscular Mycorrhizal Fungus Gigaspora margarita through Generation of Vegetative Spores. Applied and Environmental Microbiology, 2004, 70, 3600-3608.	3.1	126
13	Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environmental Microbiology, 2006, 8, 971-983.	3.8	109
14	Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. , 2011, 21, 1696-1707.		99
15	Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biology and Fertility of Soils, 2012, 48, 911-922.	4.3	95
16	454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome. Diversity, 2013, 5, 73-98.	1.7	82
17	Cohorts of arbuscular mycorrhizal fungi (AMF) in <i>Vitis vinifera</i> , a typical Mediterranean fruit crop. Environmental Microbiology Reports, 2010, 2, 594-604.	2.4	77
18	Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta, 2018, 247, 573-585.	3.2	62

#	Article	IF	CITATIONS
19	Phylogenetic analysis of Glomeromycota by partial LSU rDNA sequences. Mycorrhiza, 2006, 16, 183-189.	2.8	57
20	Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza, 2011, 21, 195-209.	2.8	55
21	Field performance of Alnus cordata loisel (Italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine-spoil afforestation plots. Soil Biology and Biochemistry, 1994, 26, 659-661.	8.8	51
22	The Nuclear Ribosomal DNA Intergenic Spacer as a Target Sequence To Study Intraspecific Diversity of the Ectomycorrhizal Basidiomycete <i>Hebeloma cylindrosporum</i> Directly on <i>Pinus</i> Root Systems. Applied and Environmental Microbiology, 1999, 65, 903-909.	3.1	51
23	Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation. Agronomy, 2019, 9, 232.	3.0	48
24	Focus on mycorrhizal symbioses. Applied Soil Ecology, 2018, 123, 299-304.	4.3	43
25	The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS ONE, 2017, 12, e0171866.	2.5	39
26	Effects of Different Microbial Inocula on Tomato Tolerance to Water Deficit. Agronomy, 2020, 10, 170.	3.0	36
27	Saffron Cultivation in Marginal Alpine Environments: How AMF Inoculation Modulates Yield and Bioactive Compounds. Agronomy, 2019, 9, 12.	3.0	35
28	PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiology Ecology, 1996, 21, 303-311.	2.7	34
29	Application of laser microdissection to identify the mycorrhizal fungi that establish arbuscules inside root cells. Frontiers in Plant Science, 2013, 4, 135.	3.6	33
30	Differential biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an Alpine succession gradient. Molecular Ecology, 2018, 27, 3671-3685.	3.9	33
31	Endobacteria or bacterial endosymbionts? To be or not to be. New Phytologist, 2006, 170, 205-208.	7.3	32
32	Simultaneous detection and quantification of the unculturable microbe <i>Candidatus</i> Glomeribacter gigasporarum inside its fungal host <i>Gigaspora margarita</i> . New Phytologist, 2008, 180, 248-257.	7.3	31
33	The <i>ftsZ</i> Gene of the Endocellular Bacterium â€ [~] <i>Candidatus</i> Glomeribacter gigasporarum' Is Preferentially Expressed During the Symbiotic Phases of Its Host Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2009, 22, 302-310.	2.6	31
34	Strategies to Modulate Specialized Metabolism in Mediterranean Crops: From Molecular Aspects to Field. International Journal of Molecular Sciences, 2021, 22, 2887.	4.1	29
35	PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Applied and Environmental Microbiology, 1996, 62, 3026-3029.	3.1	29
36	Water management and phenology influence the root-associated rice field microbiota. FEMS Microbiology Ecology, 2020, 96, .	2.7	28

#	Article	IF	CITATIONS
37	A combined morphological and molecular approach to characterize isolates of arbuscular mycorrhizal fungi in Gigaspora (Glomales). New Phytologist, 2001, 152, 169-179.	7.3	25
38	Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza, 2015, 25, 253-265.	2.8	25
39	AMF components from a microbial inoculum fail to colonize roots and lack soil persistence in an arable maize field. Symbiosis, 2017, 72, 73-80.	2.3	25
40	Impact of an arbuscular mycorrhizal fungal inoculum and exogenous MeJA on fenugreek secondary metabolite production under water deficit. Environmental and Experimental Botany, 2020, 176, 104096.	4.2	23
41	Arbuscular Mycorrhizal Fungi and their Value for Ecosystem Management. , 2014, , .		22
42	Glomalin gene as molecular marker for functional diversity of arbuscular mycorrhizal fungi in soil. Biology and Fertility of Soils, 2019, 55, 411-417.	4.3	21
43	Arbuscular mycorrhizal fungal diversity in the Tuber melanosporum brûlé. Fungal Biology, 2015, 119, 518-527.	2.5	20
44	Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of <i>Frankia</i> culture collections. Canadian Journal of Botany, 1999, 77, 1261-1269.	1.1	19
45	The last 50Âyears of climateâ€induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution, 2018, 8, 7401-7420.	1.9	18
46	Seasonal variation in winter wheat field soil arbuscular mycorrhizal fungus communities after non-mycorrhizal crop cultivation. Mycorrhiza, 2018, 28, 535-548.	2.8	16
47	Arbuscular mycorrhizal fungal community differences among European long-term observatories. Mycorrhiza, 2017, 27, 331-343.	2.8	14
48	Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families. Molecular Phylogenetics and Evolution, 2014, 75, 1-10.	2.7	13
49	Metabarcoding of Soil Fungal Communities Associated with Alpine Field-Grown Saffron (Crocus) Tj ETQq1 1 0.78	34314 rgB ⁻ 3.5	$\Gamma/Overlock$
50	Wild Camellia japonica specimens in the Shimane prefecture (Japan) host previously undescribed AMF diversity. Applied Soil Ecology, 2017, 115, 10-18.	4.3	11
51	Mining the Microbiome of Key Species from African Savanna Woodlands: Potential for Soil Health Improvement and Plant Growth Promotion. Microorganisms, 2020, 8, 1291.	3.6	11
52	Transfiguring biodegradation of frescoes in the Beata Vergine del Pilone Sanctuary (Italy): Microbial analysis and minero-chemical aspects. International Biodeterioration and Biodegradation, 2015, 98, 6-18.	3.9	10
53	Impact of land use history on the arbuscular mycorrhizal fungal diversity in arid soils of Argentinean farming fields. FEMS Microbiology Letters, 2020, 367, .	1.8	9
54	Arbuscular Mycorrhizal Fungi from Argentinean Highland Puna Soils Unveiled by Propagule Multiplication. Plants, 2021, 10, 1803.	3.5	9

#	Article	IF	CITATIONS
55	Native Arbuscular Mycorrhizal Fungi Characterization from Saline Lands in Arid Oases, Northwest China. Journal of Fungi (Basel, Switzerland), 2020, 6, 80.	3.5	8
56	Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of <i>Frankia</i> culture collections. Canadian Journal of Botany, 1999, 77, 1261-1269.	1.1	6
57	Diversity of Arbuscular Mycorrhizal Fungi in olive orchard soils in arid regions of Southern Tunisia. Arid Land Research and Management, 2022, 36, 411-427.	1.6	5
58	Alpine constructed wetlands: A metagenomic analysis reveals microbial complementary structure. Science of the Total Environment, 2022, 822, 153640.	8.0	3
59	High-Throughput DNA Sequence-Based Analysis of AMF Communities. Methods in Molecular Biology, 2020, 2146, 99-116.	0.9	2
60	SELECTION OF ARBUSCULAR MYCORRHIZAL FUNGAL ISOLATES FOR SUSTAINABLE FLORICULTURE. Acta Horticulturae, 2011, , 319-324.	0.2	1
61	Discrimination of <i>Gigaspora</i> species by PCR specific primers and phylogenetic analysis. Mycotaxon, 2012, 118, 17-26.	0.3	1
62	PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiology Ecology, 1996, 21, 303-311.	2.7	1
63	Botanica Applicata. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 521-530.	0.0	0