List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4137520/publications.pdf Version: 2024-02-01

227 papers	23,371 citations	4658 85 h-index	9345 143 g-index
232	232	232	16972
all docs	docs citations	times ranked	citing authors

à TPC ROL

#	Article	IF	CITATIONS
1	Mountain Pine Beetle Epidemic: An Interplay of Terpenoids in Host Defense and Insect Pheromones. Annual Review of Plant Biology, 2022, 73, 475-494.	18.7	7
2	Shielding the oil reserves: the scutellum as a source of chemical defenses. Plant Physiology, 2022, 188, 1944-1949.	4.8	2
3	The genome of the forest insect pest <i>Pissodes strobi</i> reveals genome expansion and evidence of a <i>Wolbachia</i> endosymbiont. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	4
4	Spruce gigaâ€genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant Journal, 2022, 111, 1469-1485.	5.7	17
5	Selection of entomopathogenic fungus Beauveria bassiana (Deuteromycotina: Hyphomycetes) for the biocontrol of Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) in Western Canada. Applied Microbiology and Biotechnology, 2021, 105, 2541-2557.	3.6	12
6	Constitutive and insectâ€induced transcriptomes of weevilâ€resistant and susceptible Sitka spruce. Plant-Environment Interactions, 2021, 2, 137-147.	1.5	7
7	4-Coumaroyl-CoA ligases in the biosynthesis of the anti-diabetic metabolite montbretin A. PLoS ONE, 2021, 16, e0257478.	2.5	2
8	Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. Plant Journal, 2020, 101, 37-56.	5.7	158
9	Complete Biosynthesis of the Anti-Diabetic Plant Metabolite Montbretin A. Plant Physiology, 2020, 184, 97-109.	4.8	18
10	Gymnosperm glandular trichomes: expanded dimensions of the conifer terpenoid defense system. Scientific Reports, 2020, 10, 12464.	3.3	8
11	Genetic elucidation of interconnected antibiotic pathways mediating maize innate immunity. Nature Plants, 2020, 6, 1375-1388.	9.3	52
12	Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evolutionary Applications, 2020, 13, 2704-2722.	3.1	19
13	Complete Mitochondrial Genome of a Gymnosperm, Sitka Spruce (Picea sitchensis), Indicates a Complex Physical Structure. Genome Biology and Evolution, 2020, 12, 1174-1179.	2.5	49
14	Terpene Synthases and Terpene Variation in <i>Cannabis sativa</i> . Plant Physiology, 2020, 184, 130-147.	4.8	52
15	Effects of forced taxonomic transitions on metabolic composition and function in microbial microcosms. Environmental Microbiology Reports, 2020, 12, 514-524.	2.4	10
16	Hydroxyacetophenone defenses in white spruce against spruce budworm. Evolutionary Applications, 2020, 13, 62-75.	3.1	12
17	An Intact, But Dormant LTR Retrotransposon Defines a Moderately Sized Family in White Spruce (Picea) Tj ETQq1	1.0.7843 0.5	14 rgBT /O
18	Cytochromes P450 Preferentially Expressed in Antennae of the Mountain Pine Beetle. Journal of	1.8	20

Cytochromes P450 Preferentially Expre Chemical Ecology, 2019, 45, 178-186.

#	Article	IF	CITATIONS
19	Biosynthesis of the antiâ€diabetic metabolite montbretin A: glucosylation of the central intermediate miniâ€MbA. Plant Journal, 2019, 100, 879-891.	5.7	11
20	Complete Chloroplast Genome Sequence of a White Spruce (Picea glauca, Genotype WS77111) from Eastern Canada. Microbiology Resource Announcements, 2019, 8, .	0.6	7
21	Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytologist, 2019, 224, 1444-1463.	7.3	139
22	ntEdit: scalable genome sequence polishing. Bioinformatics, 2019, 35, 4430-4432.	4.1	67
23	A molecular and genomic reference system for conifer defence against insects. Plant, Cell and Environment, 2019, 42, 2844-2859.	5.7	17
24	Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. PLoS ONE, 2019, 14, e0216753.	2.5	16
25	Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A. Plant Physiology, 2019, 180, 1277-1290.	4.8	39
26	Terpenes in Cannabis sativa – From plant genome to humans. Plant Science, 2019, 284, 67-72.	3.6	157
27	The cytochrome P450 CYP6DE1 catalyzes the conversion of α-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Scientific Reports, 2019, 9, 1477.	3.3	46
28	Multiple genes recruited from hormone pathways partition maize diterpenoid defences. Nature Plants, 2019, 5, 1043-1056.	9.3	60
29	Functions of stone cells and oleoresin terpenes in the conifer defense syndrome. New Phytologist, 2019, 221, 1503-1517.	7.3	30
30	Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize. Plant Physiology, 2018, 176, 2677-2690.	4.8	94
31	An annotated transcriptome of highly inbred Thuja plicata (Cupressaceae) and its utility for gene discovery of terpenoid biosynthesis and conifer defense. Tree Genetics and Genomes, 2018, 14, 1.	1.6	17
32	Evolution of the biosynthesis of two hydroxyacetophenones in plants. Plant, Cell and Environment, 2018, 41, 620-629.	5.7	19
33	Monoterpenyl esters in juvenile mountain pine beetle and sex-specific release of the aggregation pheromone <i>trans</i> -verbenol. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3652-3657.	7.1	41
34	An extended model of heartwood secondary metabolism informed by functional genomics. Tree Physiology, 2018, 38, 311-319.	3.1	41
35	Tigmint: correcting assembly errors using linked reads from large molecules. BMC Bioinformatics, 2018, 19, 393.	2.6	97
36	Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genetics, 2018, 14, e1007807.	3.5	116

3

#	Article	IF	CITATIONS
37	Discovery of UDP-Glycosyltransferases and BAHD-Acyltransferases Involved in the Biosynthesis of the Antidiabetic Plant Metabolite Montbretin A. Plant Cell, 2018, 30, 1864-1886.	6.6	41
38	Histology of resin vesicles and oleoresin terpene composition of conifer seeds. Canadian Journal of Forest Research, 2018, 48, 1073-1084.	1.7	5
39	Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nature Plants, 2018, 4, 721-729.	9.3	100
40	A highâ€resolution reference genetic map positioning 8.8ÂK genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant Journal, 2017, 90, 189-203.	5.7	47
41	Biosynthesis of the microtubule-destabilizing diterpene pseudolaric acid B from golden larch involves an unusual diterpene synthase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 974-979.	7.1	21
42	Consequences of distributional asymmetry in a warming environment: invasion of novel forests by the mountain pine beetle. Ecosphere, 2017, 8, e01778.	2.2	25
43	Cellâ€type―and tissueâ€specific transcriptomes of the white spruce (<i>Picea glauca</i>) bark unmask fineâ€scale spatial patterns of constitutive and induced conifer defense. Plant Journal, 2017, 92, 710-726.	5.7	47
44	Toxicity of Pine Monoterpenes to Mountain Pine Beetle. Scientific Reports, 2017, 7, 8858.	3.3	85
45	A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects. Plant Physiology, 2017, 175, 641-651.	4.8	24
46	Biosynthesis of the psychotropic plant diterpene salvinorin A: Discovery and characterization of the <i>Salvia divinorum</i> clerodienyl diphosphate synthase. Plant Journal, 2017, 89, 885-897.	5.7	55
47	Sesquiterpene Variation in West Australian Sandalwood (Santalum spicatum). Molecules, 2017, 22, 940.	3.8	14
48	Terpene synthases from Cannabis sativa. PLoS ONE, 2017, 12, e0173911.	2.5	183
49	<i>In vivo</i> function of <i>Pgβglu-1</i> in the release of acetophenones in white spruce. PeerJ, 2017, 5, e3535.	2.0	7
50	Assembly of the Complete Sitka Spruce Chloroplast Genome Using 10X Genomics' GemCode Sequencing Data. PLoS ONE, 2016, 11, e0163059.	2.5	31
51	Heartwoodâ€specific transcriptome and metabolite signatures of tropical sandalwood (<i>Santalum) Tj ETQq1 1 289-299.</i>	0.784314 5.7	f rgBT /Over 79
52	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie, 2016, 128, 2182-2186.	2.0	17
53	Function of Sitka spruce stone cells as a physical defence against white pine weevil. Plant, Cell and Environment, 2016, 39, 2545-2556.	5.7	21
54	Genomics-Based Discovery of Plant Genes for Synthetic Biology of Terpenoid Fragrances. Methods in Enzymology, 2016, 576, 47-67.	1.0	10

#	Article	IF	CITATIONS
55	Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products. Plant Physiology, 2016, 171, 152-164.	4.8	40
56	Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. Plant, Cell and Environment, 2016, 39, 1646-1661.	5.7	33
57	Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochemistry and Molecular Biology, 2016, 70, 170-183.	2.7	37
58	Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis. Angewandte Chemie - International Edition, 2016, 55, 2142-2146.	13.8	134
59	Organellar Genomes of White Spruce (<i>Picea glauca</i>): Assembly and Annotation. Genome Biology and Evolution, 2016, 8, 29-41.	2.5	46
60	Gene expression analysis of overwintering mountain pine beetle larvae suggests multiple systems involved in overwintering stress, cold hardiness, and preparation for spring development. PeerJ, 2016, 4, e2109.	2.0	23
61	Exploring diterpene metabolism in nonâ€model species: transcriptomeâ€enabled discovery and functional characterization of labdaâ€7,13 <i>E</i> â€dienyl diphosphate synthase from <i>Grindelia robusta</i> . Plant Journal, 2015, 83, 783-793.	5.7	31
62	Improved white spruce (<i>Picea glauca</i>) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant Journal, 2015, 83, 189-212.	5.7	200
63	Oleic Acid Metabolism via a Conserved Cytochrome P450 System-Mediated ω-Hydroxylation in the Bark Beetle-Associated Fungus Grosmannia clavigera. PLoS ONE, 2015, 10, e0120119.	2.5	13
64	Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering. Trends in Biotechnology, 2015, 33, 419-428.	9.3	133
65	The Gymnosperm Cytochrome P450 CYP750B1 Catalyzes Stereospecific Monoterpene Hydroxylation of (+)-Sabinene in Thujone Biosynthesis in Western Redcedar. Plant Physiology, 2015, 168, 94-106.	4.8	38
66	The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry, 2015, 113, 79-86.	2.9	37
67	Expression of the βâ€glucosidase gene <i>Pgβgluâ€1 </i> underpins natural resistance of white spruce against spruce budworm. Plant Journal, 2015, 81, 68-80.	5.7	52
68	Enzymes for Synthetic Biology of Ambroxide-Related Diterpenoid Fragrance Compounds. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 427-447.	1.1	19
69	UniqTag: Content-Derived Unique and Stable Identifiers for Gene Annotation. PLoS ONE, 2015, 10, e0128026.	2.5	0
70	Foliar application of methyl jasmonate does not increase terpenoid accumulation, but weakly elicits terpenoid pathway genes in sandalwood (<i>Santalum album</i> L.) seedlings. Plant Biotechnology, 2014, 31, 585-591.	1.0	8
71	Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Frontiers in Plant Science, 2014, 5, 565.	3.6	61
72	How the Mountain Pine Beetle (Dendroctonus ponderosae) Breached the Canadian Rocky Mountains. Molecular Biology and Evolution, 2014, 31, 1803-1815.	8.9	70

#	Article	IF	CITATIONS
73	Manoyl Oxide (13R), the Biosynthetic Precursor of Forskolin, Is Synthesized in Specialized Root Cork Cells in <i>Coleus forskohlii</i> . Plant Physiology, 2014, 164, 1222-1236.	4.8	135
74	Flavan-3-ols in Norway Spruce: Biosynthesis, Accumulation, and Function in Response to Attack by the Bark Beetle-Associated Fungus <i>Ćeratocystis polonica</i> Â Â Â Â. Plant Physiology, 2014, 164, 2107-2122.	4.8	72
75	Proteomics Indicators of the Rapidly Shifting Physiology from Whole Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), Adults during Early Host Colonization. PLoS ONE, 2014, 9, e110673.	2.5	30
76	Low-density Ceratocystis polonica inoculation of Norway spruce (Picea abies) triggers accumulation of monoterpenes with antifungal properties. European Journal of Forest Research, 2014, 133, 573-583.	2.5	15
77	Cloning and characterization of chitinases from interior spruce and lodgepole pine. Phytochemistry, 2014, 101, 32-39.	2.9	15
78	Insights into Conifer Giga-Genomes. Plant Physiology, 2014, 166, 1724-1732.	4.8	164
79	Plasticity and Evolution of (+)-3-Carene Synthase and (â^')-Sabinene Synthase Functions of a Sitka Spruce Monoterpene Synthase Gene Family Associated with Weevil Resistance. Journal of Biological Chemistry, 2014, 289, 23859-23869.	3.4	48
80	Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in <i>Marrubium vulgare</i> . Plant Journal, 2014, 79, 914-927.	5.7	62
81	Gene Discovery for Enzymes Involved in Limonene Modification or Utilization by the Mountain Pine Beetle-Associated Pathogen Grosmannia clavigera. Applied and Environmental Microbiology, 2014, 80, 4566-4576.	3.1	74
82	Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biology, 2014, 14, 95.	3.6	46
83	Comparative Genomics of the Pine Pathogens and Beetle Symbionts in the Genus Grosmannia. Molecular Biology and Evolution, 2014, 31, 1454-1474.	8.9	9
84	Bioproducts, Biofuels, and Perfumes: Conifer Terpene Synthases and their Potential for Metabolic Engineering. , 2014, , 85-107.		6
85	Bacteria Associated with a Tree-Killing Insect Reduce Concentrations of Plant Defense Compounds. Journal of Chemical Ecology, 2013, 39, 1003-1006.	1.8	227
86	Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biology, 2013, 14, R27.	9.6	260
87	The genome and transcriptome of the pine saprophyte Ophiostoma piceae, and a comparison with the bark beetle-associated pine pathogen Grosmannia clavigera. BMC Genomics, 2013, 14, 373.	2.8	72
88	Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics, 2013, 14, 198.	2.8	216
89	Transcriptome resources and functional characterization of monoterpene synthases for two host species of the mountain pine beetle, lodgepole pine (Pinus contorta) and jack pine (Pinus banksiana). BMC Plant Biology, 2013, 13, 80.	3.6	57
90	The cytochromes P450 of Grosmannia clavigera: Genome organization, phylogeny, and expression in response to pine host chemicals. Fungal Genetics and Biology, 2013, 50, 72-81.	2.1	41

#	Article	IF	CITATIONS
91	A specialized <scp>ABC</scp> efflux transporter <scp>G</scp> c <scp>ABC</scp> â€ <scp>G</scp> 1 confers monoterpene resistance to <i><scp>G</scp>rosmannia clavigera</i> , a bark beetleâ€associated fungal pathogen of pine trees. New Phytologist, 2013, 197, 886-898.	7.3	152
92	CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. Insect Biochemistry and Molecular Biology, 2013, 43, 1142-1151.	2.7	61
93	Gene Discovery of Modular Diterpene Metabolism in Nonmodel Systems Â. Plant Physiology, 2013, 162, 1073-1091.	4.8	154
94	Resin Acid Conversion with CYP105A1: An Enzyme with Potential for the Production of Pharmaceutically Relevant Diterpenoids. ChemBioChem, 2013, 14, 467-473.	2.6	27
95	Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166, 122-134.	3.8	196
96	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	27.8	1,303
97	ldentification of Genes in <i>Thuja plicata</i> Foliar Terpenoid Defenses Â. Plant Physiology, 2013, 161, 1993-2004.	4.8	26
98	Assembling the 20 Gb white spruce (<i>Picea glauca</i>) genome from whole-genome shotgun sequencing data. Bioinformatics, 2013, 29, 1492-1497.	4.1	356
99	Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases Â. Plant Physiology, 2013, 161, 600-616.	4.8	118
100	A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce Â. Plant Physiology, 2013, 162, 1324-1336.	4.8	150
101	Frontalin pheromone biosynthesis in the mountain pine beetle, <i>Dendroctonus ponderosae</i> , and the role of isoprenyl diphosphate synthases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18838-18843.	7.1	40
102	Disentangling Detoxification: Gene Expression Analysis of Feeding Mountain Pine Beetle Illuminates Molecular-Level Host Chemical Defense Detoxification Mechanisms. PLoS ONE, 2013, 8, e77777.	2.5	57
103	Biosynthesis of Sandalwood Oil: Santalum album CYP76F Cytochromes P450 Produce Santalols and Bergamotol. PLoS ONE, 2013, 8, e75053.	2.5	117
104	Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases Journal of Biological Chemistry, 2012, 287, 37713-37714.	3.4	0
105	Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in GewA¼rztraminer grapes. Planta, 2012, 236, 919-929.	3.2	112
106	SNP discovery, gene diversity, and linkage disequilibrium in wild populations of Populus tremuloides. Tree Genetics and Genomes, 2012, 8, 821-829.	1.6	86
107	Pine terpenoid defences in the mountain pine beetle epidemic and in other conifer pest interactions: specialized enemies are eating holes into a diverse, dynamic and durable defence system. Tree Physiology, 2012, 32, 943-945.	3.1	59
108	Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production. Journal of Biological Chemistry, 2012, 287, 12121-12131.	3.4	75

#	Article	IF	CITATIONS
109	Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochemistry and Molecular Biology, 2012, 42, 525-536.	2.7	93
110	Slow but not low: genomic comparisons reveal slower evolutionary rate and higher dN/dS in conifers compared to angiosperms. BMC Evolutionary Biology, 2012, 12, 8.	3.2	164
111	Discovery and functional characterization of two diterpene synthases for sclareol biosynthesis in Salvia sclarea(L.) and their relevance for perfume manufacture. BMC Plant Biology, 2012, 12, 119.	3.6	151
112	Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochemistry and Molecular Biology, 2012, 42, 890-901.	2.7	61
113	The Relative Abundance of Mountain Pine Beetle Fungal Associates Through the Beetle Life Cycle in Pine Trees. Microbial Ecology, 2012, 64, 909-917.	2.8	20
114	Population structure and migration pattern of a conifer pathogen, <i>Grosmannia clavigera</i> , as influenced by its symbiont, the mountain pine beetle. Molecular Ecology, 2012, 21, 71-86.	3.9	46
115	Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30, 127-131.	9.3	128
116	Mutational analysis of white spruce (Picea glauca) ent-kaurene synthase (PgKS) reveals common and distinct mechanisms of conifer diterpene synthases of general and specialized metabolism. Phytochemistry, 2012, 74, 30-39.	2.9	41
117	A transcriptomic approach to identify genes associated with wood density inPicea sitchensis. Scandinavian Journal of Forest Research, 2011, 26, 82-96.	1.4	5
118	The Primary Diterpene Synthase Products of Picea abies Levopimaradiene/Abietadiene Synthase (PaLAS) Are Epimers of a Thermally Unstable Diterpenol. Journal of Biological Chemistry, 2011, 286, 21145-21153.	3.4	52
119	Sandalwood Fragrance Biosynthesis Involves Sesquiterpene Synthases of Both the Terpene Synthase (TPS)-a and TPS-b Subfamilies, including Santalene Synthases. Journal of Biological Chemistry, 2011, 286, 17445-17454.	3.4	127
120	Efficacy of tree defense physiology varies with bark beetle population density: a basis for positive feedback in eruptive species. Canadian Journal of Forest Research, 2011, 41, 1174-1188.	1.7	250
121	A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes. Journal of Microbiological Methods, 2011, 86, 368-375.	1.6	33
122	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31 January 2011. Molecular Ecology Resources, 2011, 11, 586-589.	4.8	38
123	An integrated genomic, proteomic and biochemical analysis of (+)â€3â€earene biosynthesis in Sitka spruce (<i>Picea sitchensis</i>) genotypes that are resistant or susceptible to white pine weevil. Plant Journal, 2011, 65, 936-948.	5.7	116
124	The family of terpene synthases in plants: a midâ€size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal, 2011, 66, 212-229.	5.7	1,068
125	Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen <i>Grosmannia clavigera</i> . Molecular Ecology, 2011, 20, 2581-2602.	3.9	57
126	The versatility of the fungal cytochrome P450 monooxygenase system is instrumental in xenobiotic detoxification. Molecular Microbiology, 2011, 81, 1374-1389.	2.5	73

#	Article	IF	CITATIONS
127	Terpenoid Synthases—From Chemical Ecology and Forest Fires to Biofuels and Bioproducts. Structure, 2011, 19, 1730-1731.	3.3	10
128	Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Piceaspp.). BMC Plant Biology, 2011, 11, 43.	3.6	120
129	Responses of Bark Beetle-Associated Bacteria to Host Monoterpenes and Their Relationship to Insect Life Histories. Journal of Chemical Ecology, 2011, 37, 808-817.	1.8	73
130	RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Molecular Biology, 2011, 77, 323-336.	3.9	80
131	Biomarkers and gene copy number variation for terpenoid traits associated with insect resistance in Sitka spruce: An integrated genomic, proteomic, and biochemical analysis of (+)-3-carene biosynthesis. BMC Proceedings, 2011, 5, .	1.6	1
132	Impact of <i>Salmonella</i> Infection on Host Hormone Metabolism Revealed by Metabolomics. Infection and Immunity, 2011, 79, 1759-1769.	2.2	104
133	Evolution of Diterpene Metabolism: Sitka Spruce CYP720B4 Catalyzes Multiple Oxidations in Resin Acid Biosynthesis of Conifer Defense against Insects Â. Plant Physiology, 2011, 157, 1677-1695.	4.8	149
134	Biosynthesis of the Major Tetrahydroxystilbenes in Spruce, Astringin and Isorhapontin, Proceeds via Resveratrol and Is Enhanced by Fungal Infection Â. Plant Physiology, 2011, 157, 876-890.	4.8	112
135	Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont <i>Grosmannia clavigera</i> , a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2504-2509.	7.1	218
136	Agrobacterium-meditated gene disruption using split-marker in Grosmannia clavigera, a mountain pine beetle associated pathogen. Current Genetics, 2010, 56, 297-307.	1.7	39
137	Multivariate analysis of digital gene expression profiles identifies a xylem signature of the vascular tissue of white spruce (Picea glauca). Tree Genetics and Genomes, 2010, 6, 601-611.	1.6	3
138	Gene discovery for the bark beetle-vectored fungal tree pathogen Grosmannia clavigera. BMC Genomics, 2010, 11, 536.	2.8	25
139	Laser microdissection of conifer stem tissues: Isolation and analysis of high quality RNA, terpene synthase enzyme activity and terpenoid metabolites from resin ducts and cambial zone tissue of white spruce (Picea glauca). BMC Plant Biology, 2010, 10, 106.	3.6	83
140	Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays. BMC Plant Biology, 2010, 10, 226.	3.6	390
141	Immunofluorescence localization of levopimaradiene/abietadiene synthase in methyl jasmonate treated stems of Sitka spruce (Picea sitchensis) shows activation of diterpenoid biosynthesis in cortical and developing traumatic resin ducts. Phytochemistry, 2010, 71, 1695-1699.	2.9	21
142	Transcriptome profiles of hybrid poplar (<i>Populus trichocarpa</i> â€f×â€f <i>deltoides</i>) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (<i>Malacosoma disstria</i>). New Phytologist, 2010, 188, 787-802.	7.3	48
143	Behavioral and Reproductive Response of White Pine Weevil (Pissodes strobi) to Resistant and Susceptible Sitka Spruce (Picea sitchensis). Insects, 2010, 1, 3-19.	2.2	11
144	Identification and Functional Characterization of Monofunctional <i>ent</i> -Copalyl Diphosphate and <i>ent</i> -Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms. Plant Physiology, 2010, 152, 1197-1208.	4.8	99

#	Article	IF	CITATIONS
145	Rapid identification and detection of pine pathogenic fungi associated with mountain pine beetles by padlock probes. Journal of Microbiological Methods, 2010, 83, 26-33.	1.6	24
146	Terpenoid Biosynthesis and Specialized Vascular Cells of Conifer Defense. Journal of Integrative Plant Biology, 2010, 52, 86-97.	8.5	254
147	Terpenoid metabolite profiling in Sitka spruce identifies association of dehydroabietic acid, (+)-3-carene, and terpinolene with resistance against white pine weevil. Botany, 2010, 88, 810-820.	1.0	57
148	Old substrates for new enzymes of terpenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10402-10403.	7.1	27
149	The bouquet of grapevine (<i>Vitis vinifera</i> L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7245-7250.	7.1	97
150	Targeted isolation, sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. BMC Plant Biology, 2009, 9, 106.	3.6	55
151	Identification of COS markers in the Pinaceae. Tree Genetics and Genomes, 2009, 5, 247-255.	1.6	28
152	Spruce proteome DB: a resource for conifer proteomics research. Tree Genetics and Genomes, 2009, 5, 723-727.	1.6	12
153	Quantitative iTRAQ proteome and comparative transcriptome analysis of elicitorâ€induced Norway spruce (<i>Picea abies</i>) cells reveals elements of calcium signaling in the early conifer defense response. Proteomics, 2009, 9, 350-367.	2.2	30
154	Targeted proteomics using selected reaction monitoring reveals the induction of specific terpene synthases in a multiâ€level study of methyl jasmonateâ€treated Norway spruce (<i>Picea abies</i>). Plant Journal, 2009, 60, 1015-1030.	5.7	106
155	Poplar defense against insects: genome analysis, fullâ€length cDNA cloning, and transcriptome and protein analysis of the poplar Kunitzâ€type protease inhibitor family. New Phytologist, 2009, 184, 865-884.	7.3	49
156	Analysis of the Poplar Phloem Proteome and Its Response to Leaf Wounding. Journal of Proteome Research, 2009, 8, 2341-2350.	3.7	50
157	De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data. Genome Biology, 2009, 10, R94.	9.6	130
158	Monoterpene-induced molecular responses in Arabidopsis thaliana. Phytochemistry, 2008, 69, 1838-1849.	2.9	113
159	Global monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (<i>Picea sitchensis</i>). New Phytologist, 2008, 178, 103-122.	7.3	111
160	Genomeâ€wide analysis of a land plantâ€specific <i>acyl:coenzymeA synthetase</i> (<i>ACS</i>) gene family in <i>Arabidopsis</i> , poplar, rice and <i>Physcomitrella</i> . New Phytologist, 2008, 179, 987-1003.	7.3	72
161	Terpenoid biomaterials. Plant Journal, 2008, 54, 656-669.	5.7	423
162	Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella) Tj ETQq0 0	0 rgBT /O [.] 2.8	verlock 10 Tf 90

Genomics, 2008, 9, 154.

#	Article	IF	CITATIONS
163	A conifer genomics resource of 200,000 spruce (Picea spp.) ESTs and 6,464 high-quality, sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). BMC Genomics, 2008, 9, 484.	2.8	113
164	Analysis of 4,664 high-quality sequence-finished poplar full-length cDNA clones and their utility for the discovery of genes responding to insect feeding. BMC Genomics, 2008, 9, 57.	2.8	68
165	Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L Archives of Biochemistry and Biophysics, 2008, 477, 121-130.	3.0	72
166	Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1085-1090.	7.1	178
167	Insect-Induced Terpenoid Defenses in Spruce. , 2008, , 173-187.		16
168	The Transcriptional Response of Hybrid Poplar (Populus trichocarpa x P. deltoids) to Infection by Melampsora medusae Leaf Rust Involves Induction of Flavonoid Pathway Genes Leading to the Accumulation of Proanthocyanidins. Molecular Plant-Microbe Interactions, 2007, 20, 816-831.	2.6	205
169	Aminocyclopropane Carboxylic Acid Synthase Is a Regulated Step in Ethylene-Dependent Induced Conifer Defense. Full-Length cDNA Cloning of a Multigene Family, Differential Constitutive, and Wound- and Insect-Induced Expression, and Cellular and Subcellular Localization in Spruce and Douglas Fir. Plant Physiology. 2007. 143. 410-424.	4.8	54
170	Microarray gene expression profiling of developmental transitions in Sitka spruce (Picea sitchensis) apical shoots. Journal of Experimental Botany, 2007, 58, 593-614.	4.8	44
171	Generation of ESTs in Vitis vinifera wine grape (Cabernet Sauvignon) and table grape (Muscat) Tj ETQq1 1 0.7843 402, 40-50.	14 rgBT /(2.2	Overlock 10 45
172	Poplar defense against insect herbivoresThis review is one of a selection of papers published in the Special Issue on Poplar Research in Canada Canadian Journal of Botany, 2007, 85, 1111-1126.	1.1	65
173	Dirigent proteins in conifer defense II: Extended gene discovery, phylogeny, and constitutive and stress-induced gene expression in spruce (Picea spp.)â~†. Phytochemistry, 2007, 68, 1975-1991.	2.9	116
174	Conifer defense against insects: Proteome analysis of Sitka spruce (Picea sitchensis) bark induced by mechanical wounding or feeding by white pine weevils (Pissodes strobi). Proteomics, 2007, 7, 248-270.	2.2	82
175	A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map and analysis of haplotype variation. Plant Journal, 2007, 50, 1063-1078.	5.7	70
176	Transgenic, non-isoprene emitting poplars don't like it hot. Plant Journal, 2007, 51, 485-499.	5.7	229
177	Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungusOphiostoma clavigerum, a Mountain Pine Beetle-associated pathogen. FEMS Microbiology Letters, 2007, 267, 151-158.	1.8	42
178	Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Reports, 2007, 26, 2083-2090.	5.6	32
179	Characterization of EST-SSRs in loblolly pine and spruce. Tree Genetics and Genomes, 2007, 3, 251-259.	1.6	33
180	Functional identification and differential expression of 1-deoxy-d-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Molecular Biology, 2007, 65, 243-257.	3.9	126

#	Article	lF	CITATIONS
181	The Molecular Basis for Wine Grape Quality-A Volatile Subject. Science, 2006, 311, 804-805.	12.6	158
182	Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-Î3-bisabolene synthases. Archives of Biochemistry and Biophysics, 2006, 448, 104-116.	3.0	60
183	Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens*. New Phytologist, 2006, 170, 657-675.	7.3	593
184	Genomics of hybrid poplar (Populus trichocarpa× deltoides) interacting with forest tent caterpillars (Malacosoma disstria): normalized and full-length cDNA libraries, expressed sequence tags, and a cDNA microarray for the study of insect-induced defences. Molecular Ecology, 2006, 15, 1275-1297.	3.9	183
185	Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Molecular Ecology, 2006, 15, 1367-1378.	3.9	140
186	Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea) Tj ETQq0 0 0 rgBT	Overlock 1 5.7	10 Tf 50 552 T 221
187	transcriptome. Plant, Cell and Environment, 2006, 29, 1545-1570. Diterpene resin acid biosynthesis in loblolly pine (Pinus taeda): Functional characterization of abietadiene/levopimaradiene synthase (PtTPS-LAS) cDNA and subcellular targeting of PtTPS-LAS and abietadienol/abietadienal oxidase (PtAO, CYP720B1). Phytochemistry, 2006, 67, 1572-1578.	2.9	78
188	Molecular Regulation of Induced Terpenoid Biosynthesis in Conifers. Phytochemistry Reviews, 2006, 5, 179-189.	6.5	22
189	Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemistry Reviews, 2006, 5, 143-178.	6.5	233
190	Dirigent Proteins in Conifer Defense: Gene Discovery, Phylogeny, and Differential Wound- and Insect-induced Expression of a Family of DIR and DIR-like Genes in Spruce (Picea spp.). Plant Molecular Biology, 2006, 60, 21-40.	3.9	160
191	Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta, 2006, 224, 865-877.	3.2	74
192	Diterpene resin acids in conifers. Phytochemistry, 2006, 67, 2415-2423.	2.9	284
193	Wound-Induced Terpene Synthase Gene Expression in Sitka Spruce That Exhibit Resistance or Susceptibility to Attack by the White Pine Weevil Â. Plant Physiology, 2006, 140, 1009-1021.	4.8	106
194	Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry, 2005, 66, 1427-1439.	2.9	70
195	Global transcript profiling of primary stems from Arabidopsis thaliana identifies candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant Journal, 2005, 42, 618-640.	5.7	254
196	Efficient Genetic Mapping of Single Nucleotide Polymorphisms Based Upon DNA Mismatch Digestion. Molecular Breeding, 2005, 16, 261-270.	2.1	17
197	Proteome analysis of early somatic embryogenesis inPicea glauca. Proteomics, 2005, 5, 461-473.	2.2	166
198	Changes in anatomy and terpene chemistry in roots of Douglas-fir seedlings following treatment with methyl jasmonate. Tree Physiology, 2005, 25, 1075-1083.	3.1	77

#	Article	IF	CITATIONS
199	Insect-Induced Conifer Defense. White Pine Weevil and Methyl Jasmonate Induce Traumatic Resinosis, de Novo Formed Volatile Emissions, and Accumulation of Terpenoid Synthase and Putative Octadecanoid Pathway Transcripts in Sitka Spruce. Plant Physiology, 2005, 137, 369-382.	4.8	262
200	Molecular Biochemistry and Genomics of Terpenoid Defenses in Conifers. Recent Advances in Phytochemistry, 2005, , 29-56.	0.5	45
201	Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8060-8065.	7.1	172
202	Isolation of high-quality RNA from gymnosperm and angiosperm trees. BioTechniques, 2004, 36, 821-824.	1.8	148
203	Characterization of a Root-Specific Arabidopsis Terpene Synthase Responsible for the Formation of the Volatile Monoterpene 1,8-Cineole. Plant Physiology, 2004, 135, 1956-1966.	4.8	207
204	Herbivore-Induced Defense Response in a Model Legume. Two-Spotted Spider Mites Induce Emission of (<i>E</i>)- <i>β</i> -Ocimene and Transcript Accumulation of (<i>E</i>)- <i>β</i> -Ocimene Synthase in <i>Lotus japonicus</i> Â. Plant Physiology, 2004, 135, 1976-1983.	4.8	139
205	Functional Characterization of Nine Norway Spruce TPS Genes and Evolution of Gymnosperm Terpene Synthases of the TPS-d Subfamily. Plant Physiology, 2004, 135, 1908-1927.	4.8	369
206	Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpaâ€f×â€fdeltoides): cDNA cloning, functional characterization, and patterns of gene expression of (â°)-germacr. Plant Journal, 2004, 37, 603-616.	5.7	220
207	Vitis vinifera terpenoid cyclases: functional identification of two sesquiterpene synthase cDNAs encoding (+)-valencene synthase and (â^)-germacrene D synthase and expression of mono- and sesquiterpene synthases in grapevine flowers and berries. Phytochemistry, 2004, 65, 2649-2659.	2.9	205
208	GENOMIC HARDWIRING AND PHENOTYPIC PLASTICITY OF TERPENOID-BASED DEFENSES IN CONIFERS. Journal of Chemical Ecology, 2004, 30, 2399-2418.	1.8	73
209	Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theoretical and Applied Genetics, 2004, 109, 1283-1294.	3.6	181
210	Mono and diterpene production inEscherichia coli. Biotechnology and Bioengineering, 2004, 87, 200-212.	3.3	141
211	Identification of Vitis vinifera (â^')-α-terpineol synthase by in silico screening of full-length cDNA ESTs and functional characterization of recombinant terpene synthase. Phytochemistry, 2004, 65, 1223-1229.	2.9	122
212	Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Molecular Biology, 2003, 51, 119-133.	3.9	171
213	A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, lps pini. Die Naturwissenschaften, 2003, 90, 173-179.	1.6	43
214	Functional identification of AtTPSO3 as (E)-l²-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta, 2003, 216, 745-751.	3.2	134
215	Insect Attack and Wounding Induce Traumatic Resin Duct Development and Gene Expression of (—)-Pinene Synthase in Sitka Spruce. Plant Physiology, 2003, 133, 368-378.	4.8	144
216	Induction of Volatile Terpene Biosynthesis and Diurnal Emission by Methyl Jasmonate in Foliage of Norway Spruce. Plant Physiology, 2003, 132, 1586-1599.	4.8	381

IF # ARTICLE CITATIONS (E)-Î²-Ocimene and Myrcene Synthase Genes of Floral Scent Biosynthesis in Snapdragon: Function and Expression of Three Terpene Synthase Genes of a New Terpene Synthase Subfamily. Plant Cell, 2003, 15, 6.6 397 1227-1241. Mechanisms of Resistance in Conifers Against Shoot Infesting Insects., 2002, , 105-130. 218 16 Methyl Jasmonate Induces Traumatic Resin Ducts, Terpenoid Resin Biosynthesis, and Terpenoid 219 4.8 Accumulation in Developing Xylem of Norway Spruce Stems. Plant Physiology, 2002, 129, 1003-1018. Gene expression of 5-epi-aristolochene synthase and formation of capsidiol in roots of Nicotiana 220 2.9 39 attenuata and N. sylvestris. Phytochemistry, 2002, 60, 109-116. BIOSYNTHESIS OF CONIFEROPHAGOUS BARK BEETLE PHEROMONES AND CONIFER ISOPRENOIDS: 0.8 EVOLUTIONARY PERSPECTIVE AND SYNTHESIS. Canadian Entomologist, 2000, 132, 697-753. Terpenoid Secondary Metabolism in Arabidopsis thaliana: cDNA Cloning, Characterization, and 222 Functional Expression of a Myrcene/(E)- \hat{I}^2 -Ocimene Synthase. Archives of Biochemistry and Biophysics, 3.0 137 2000, 375, 261-269. cDNA Cloning, Characterization, and Functional Expression of Four New Monoterpene Synthase Members of the Tpsd Gene Family from Grand Fir (Abies grandis). Archives of Biochemistry and Biophysics, 1999, 368, 232-243. 130 Diversity and Variability of Terpenoid Defences in Conifers: Molecular Genetics, Biochemistry and Evolution of the Terpene Synthase Gene Family in Grand Fir (<i>Abies Grandis (/i>). Novartis 224 1.1 34 Foundation Symposium, 1999, 223, 132-149. Sesquiterpene Synthases from Grand Fir (Abies grandis). Journal of Biological Chemistry, 1998, 273, 3.4 362 2078-2089. Monoterpene Synthases from Grand Fir (Abies grandis). Journal of Biological Chemistry, 1997, 272, 226 3.4 210 21784-21792. Purification and cDNA cloning of anthranilate synthase from Ruta graveolens: modes of expression 5.7 and properties of native and recombinant enzymes. Plant Journal, 1995, 7, 491-501.