Manpreet Kaur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4137503/publications.pdf

Version: 2024-02-01

471509 377865 1,171 35 17 34 citations h-index g-index papers 35 35 35 1490 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ensuring yield sustainability and nutritional security through enriching manures with fertilizers under rice–wheat system in North-western India. Journal of Plant Nutrition, 2022, 45, 540-557.	1.9	3
2	Mechanistic insight into adsorption and photocatalytic potential of magnesium ferrite-bentonite nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113717.	3.9	13
3	Insight into peroxidase and polyphenol oxidase mimic activity of spinel ferrite nanoparticles and their GO composites. Materials Chemistry and Physics, 2022, 279, 125727.	4.0	6
4	Magnesium ferrite-nitrogen–doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III). Environmental Science and Pollution Research, 2022, 29, 48260-48275.	5.3	10
5	Nanocomposite of MgFe2O4 and Mn3O4 as Polyphenol Oxidase Mimic for Sensing of Polyphenols. Biosensors, 2022, 12, 428.	4.7	5
6	Composition optimization of activated carbon-iron oxide nanocomposite for effective removal of Cr(VI)ions. Materials Chemistry and Physics, 2021, 258, 124002.	4.0	38
7	Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India. Sustainability, 2021, 13, 4551.	3.2	13
8	Comparative studies on adsorptive and photocatalytic potential of differently synthesized ferric oxide nanoparticles for malachite green. Water Science and Technology, 2021, 84, 2857-2870.	2.5	7
9	Synthesis of CaFe2O4-NGO Nanocomposite for Effective Removal of Heavy Metal Ion and Photocatalytic Degradation of Organic Pollutants. Nanomaterials, 2021, 11, 1471.	4.1	24
10	Insight into the structural, optical, adsorptive, and photocatalytic properties of MgFe2O4-bentonite nanocomposites. Journal of Physics and Chemistry of Solids, 2021, 154, 110060.	4.0	19
11	Boron- and phosphorous-doped graphene nanosheets and quantum dots as sensors and catalysts in environmental applications: a review. Environmental Chemistry Letters, 2021, 19, 4375-4392.	16.2	26
12	Impact of Integrated Nutrient Management on Transformations of Micronutrients and Uptake by Wheat Crop in North-western India. Journal of Soil Science and Plant Nutrition, 2021, 21, 2932-2945.	3.4	3
13	Structural tuning of CTAB@MgFe2O4 nanocomposite as peroxidase mimic for H2O2 and glucose sensing. Materials Chemistry and Physics, 2021, 271, 124851.	4.0	14
14	Comparative studies on structural, magnetic and adsorptive properties of fused Fe2O3@ SiO2and rattle shapedSiO2@Fe2O3nanospheres with reversal of core-shell. Materials Chemistry and Physics, 2020, 242, 122548.	4.0	7
15	Heteroatom-doped graphene as sensing materials: a mini review. RSC Advances, 2020, 10, 28608-28629.	3.6	85
16	Mechanistic insight into structural and adsorptive properties of core shell reversal nanocomposites of rice husk silica and magnesium ferrite. Advanced Powder Technology, 2020, 31, 2315-2326.	4.1	14
17	Facile fabrication of ternary nanocomposite of MgFe2O4 TiO2@GO for synergistic adsorption and photocatalytic degradation studies. Ceramics International, 2019, 45, 8646-8659.	4.8	40
18	Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Environmental Pollution, 2019, 253, 111-119.	7.5	49

#	Article	IF	CITATIONS
19	Superoxide dismutase mimic activity of spinel ferrite \$\${hbox {MFe}}_{2} {hbox {O}}_{4}\$\$ MFe 2 O 4		