Javier Ramon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4137046/publications.pdf

Version: 2024-02-01

201385 182168 2,719 77 27 51 h-index citations g-index papers 85 85 85 4009 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Islet-on-a-chip for the study of pancreatic \hat{l}^2 -cell function. In Vitro Models, 2022, 1, 41-57.	1.0	7
2	Collagenâ€Tannic Acid Spheroids for βâ€Cell Encapsulation Fabricated Using a 3D Bioprinter. Advanced Materials Technologies, 2022, 7, .	3.0	8
3	Ammonium quantification (AQua) in human plasma by ¹ Hâ€NMR for staging of liver fibrosis in alcoholâ€related liver disease and nonâ€alcoholic fatty liver disease. NMR in Biomedicine, 2022, , e4745.	1.6	4
4	Fatty Hepatocytes Induce Skeletal Muscle Atrophy In Vitro: A New 3D Platform to Study the Protective Effect of Albumin in Non-Alcoholic Fatty Liver. Biomedicines, 2022, 10, 958.	1.4	8
5	Bioengineered <i>in vitro</i> skeletal muscles as new tools for muscular dystrophies preclinical studies. Journal of Tissue Engineering, 2021, 12, 204173142098133.	2.3	21
6	The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. Biomedicines, 2021, 9, 248.	1.4	9
7	In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. Biosensors, 2021, 11, 138.	2.3	30
8	Bioengineered in vitro 3D model of myotonic dystrophy type 1 human skeletal muscle. Biofabrication, 2021, 13, 035035.	3.7	24
9	Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication, 2021, 13, 035044.	3.7	13
10	Topography and Permeability Analyses of Vasculatureâ€onâ€aâ€Chip Using Scanning Probe Microscopies. Advanced Healthcare Materials, 2021, 10, e2101186.	3.9	6
11	Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles. Nanophotonics, 2021, 10, 4477-4488.	2.9	10
12	Disposable Polymeric Nanostructured Plasmonic Biosensors for Cell Culture Adhesion Monitoring. Frontiers in Bioengineering and Biotechnology, 2021, 9, 799325.	2.0	3
13	New volumetric CNT-doped gelatin–cellulose scaffolds for skeletal muscle tissue engineering. Nanoscale Advances, 2020, 2, 2885-2896.	2.2	26
14	Direct and Label-Free Monitoring of Albumin in 2D Fatty Liver Disease Model Using Plasmonic Nanogratings. Nanomaterials, 2020, 10, 2520.	1.9	7
15	Consequences of Lmna Exon 4 Mutations in Myoblast Function. Cells, 2020, 9, 1286.	1.8	6
16	Microphysiological sensing platform for an in-situ detection of tissue-secreted cytokines. Biosensors and Bioelectronics: X, 2019, 2, 100025.	0.9	13
17	Muscle-on-a-chip with an on-site multiplexed biosensing system for <i>in situ</i> monitoring of secreted IL-6 and TNF-α. Lab on A Chip, 2019, 19, 2568-2580.	3.1	102
18	High Protein Diet and Metabolic Plasticity in Non-Alcoholic Fatty Liver Disease: Myths and Truths. Nutrients, 2019, 11, 2985.	1.7	26

#	Article	IF	CITATIONS
19	Al ₂ O ₃ microring resonators for the detection of a cancer biomarker in undiluted urine. Optics Express, 2019, 27, 18508.	1.7	16
20	Al <inf>2</inf> O <inf>3</inf> Microresonator Based Passive and Active Biosensors. , 2018, , .		0
21	Al2O3 Microresonators for Passive and Active Sensing Applications. , 2018, , .		2
22	Composite Biomaterials as Longâ€Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue. Macromolecular Bioscience, 2018, 18, e1800167.	2.1	104
23	Intracellular Electrochemical Sensing. Electroanalysis, 2018, 30, 2195-2209.	1.5	21
24	Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 582-595.	1.3	70
25	Assessment of analytical methods to determine pyrethroids content of bednets. Tropical Medicine and International Health, 2017, 22, 41-51.	1.0	4
26	Nanofiber composites in blood vessel tissue engineering. , 2017, , 483-506.		8
27	Engineered Muscle Tissues for Disease Modeling and Drug Screening Applications. Current Pharmaceutical Design, 2017, 23, 2991-3004.	0.9	15
28	Clinical/preclinical aspects of nanofiber composites. , 2017, , 507-528.		3
29	Carbon Nanotubes and Graphene-Based Nanomaterials for Stem Cell Differentiation and Tissue Regeneration. Journal of Nanoscience and Nanotechnology, 2016, 16, 8862-8880.	0.9	37
30	Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 2016, 31, 134-143.	4.1	145
31	Facile and green production of aqueous graphene dispersions for biomedical applications. Nanoscale, 2015, 7, 6436-6443.	2.8	114
32	Microtubule guiding in a multi-walled carbon nanotube circuit. Biomedical Microdevices, 2015, 17, 78.	1.4	7
33	Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015, 3, 1449-1458.	2.6	27
34	Gradient Biomaterials as Tissue Scaffolds. , 2015, , 175-186.		1
35	Metallic glass nanofibers in future hydrogel-based scaffolds. , 2014, 2014, 5276-9.		0
36	Applications of Carbon Nanotubes in Stem Cell Research. Journal of Biomedical Nanotechnology, 2014, 10, 2539-2561.	0.5	29

#	Article	IF	CITATIONS
37	The Use of Microtechnology and Nanotechnology in Fabricating Vascularized Tissues. Journal of Nanoscience and Nanotechnology, 2014, 14, 487-500.	0.9	25
38	Dielectrophoretical fabrication of hybrid carbon nanotubes-hydrogel biomaterial for muscle tissue engineering applications. Materials Research Society Symposia Proceedings, 2014, 1621, 81-86.	0.1	1
39	Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications. Biosensors and Bioelectronics, 2014, 59, 166-173.	5. 3	35
40	Molecular Motor-Powered Shuttles along Multi-walled Carbon Nanotube Tracks. Nano Letters, 2014, 14, 876-881.	4.5	21
41	Electrically regulated differentiation of skeletal muscle cells on ultrathin graphene-based films. RSC Advances, 2014, 4, 9534.	1.7	57
42	Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on A Chip, 2014, 14, 3690-3694.	3.1	22
43	Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 2014, 4, 4271.	1.6	213
44	Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor. Biosensors and Bioelectronics, 2013, 50, 194-201.	5. 3	20
45	Dielectrophoretically Aligned Carbon Nanotubes to Control Electrical and Mechanical Properties of Hydrogels to Fabricate Contractile Muscle Myofibers. Advanced Materials, 2013, 25, 4028-4034.	11.1	236
46	Alginate gel microwell arrays using electrodeposition for three-dimensional cell culture. Lab on A Chip, 2013, 13, 3128.	3.1	71
47	Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes. Lab on A Chip, 2013, 13, 3650.	3.1	68
48	A contactless electrical stimulator: application to fabricate functional skeletal muscle tissue. Biomedical Microdevices, 2013, 15, 109-115.	1.4	35
49	Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells. Lab on A Chip, 2012, 12, 2959.	3.1	148
50	Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab on A Chip, 2012, 12, 3491.	3.1	96
51	Detection of Pesticide Residues Using Biosensors. , 2012, , 21-40.		1
52	3.2.2 Toward functional engineered tissues as biosensors using hydrogels and dielectrophoretic technique. , 2012, , .		0
53	Sensitive and Spatially Multiplexed Detection System Based on Dielectrophoretic Manipulation of DNA-Encoded Particles Used as Immunoreactions Platform. Analytical Chemistry, 2011, 83, 1053-1060.	3.2	37
54	Immunodevice for simultaneous detection of two relevant tumor markers based on separation of different microparticles by dielectrophoresis. Biosensors and Bioelectronics, 2011, 28, 443-449.	5. 3	16

#	Article	IF	CITATIONS
55	Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chemistry, 2010, 122, 888-894.	4.2	33
56	Competitive multi-immunosensing of pesticides based on the particle manipulation with negative dielectrophoresis. Biosensors and Bioelectronics, 2010, 25, 1928-1933.	5.3	40
57	Evaluation of Immunoassays as an Alternative for the Rapid Determination of Pesticides in Wine and Grape Samples. Journal of AOAC INTERNATIONAL, 2010, 93, 2-11.	0.7	7
58	Rapid and simple immunosensing system for simultaneous detection of tumor markers based on negative-dielectrophoretic manipulation of microparticles. Talanta, 2010, 81, 657-663.	2.9	47
59	Rapid immunosensing based on accumulation of microparticles by negative dielectrophoresis. , 2009, , .		0
60	Detection of pesticide residues using an immunodevice based on negative dielectrophoresis. Biosensors and Bioelectronics, 2009, 24, 1592-1597.	5.3	36
61	Development of an Enzyme-Linked Immunosorbent Assay for Determination of the Miticide Bromopropylate. Journal of Agricultural and Food Chemistry, 2009, 57, 375-384.	2.4	17
62	Interdigitated & $\#x003BC$;-electrodes for development of an impedimetric immunosensor for atrazine detection., 2009,,.		0
63	Biosensors for Pharmaceuticals and Emerging Contaminants Based on Novel Micro and Nanotechnology Approaches. Handbook of Environmental Chemistry, 2009, , 47-68.	0.2	5
64	An impedimetric immunosensor based on interdigitated microelectrodes ($ID\hat{1}/4E$) for the determination of atrazine residues in food samples. Biosensors and Bioelectronics, 2008, 23, 1367-1373.	5.3	86
65	Preparation of antibodies and development of a sensitive immunoassay with fluorescence detection for triazine herbicides. Analytical and Bioanalytical Chemistry, 2008, 391, 1801-1812.	1.9	29
66	Single frequency impedimetric immunosensor for atrazine detection. Sensors and Actuators B: Chemical, 2008, 129, 921-928.	4.0	18
67	Conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles. Sensors and Actuators B: Chemical, 2008, 134, 95-103.	4.0	50
68	Characterisation of the interdigitated electrode array with tantalum silicide electrodes separated by insulating barriers. Electrochemistry Communications, 2008, 10, 1621-1624.	2.3	25
69	Three-dimensional interdigitated electrode array as a transducer for label-free biosensors. Biosensors and Bioelectronics, 2008, 24, 729-735.	5.3	51
70	Negative dielectrophoretic manipulation with microparticles for rapid immunosensing. , 2008, , .		0
71	High frequency response of a novel biosensor based on interdigitated μ-electrodes (IDμE's). , 2007, , .		0
72	Impedimetric immunosensor for atrazine detection using interdigitated \hat{l}_4 -electrodes (ID \hat{l}_4 E's). Sensors and Actuators B: Chemical, 2007, 125, 526-537.	4.0	53

#	ARTICLE	IF	CITATION
73	Part per trillion determination of atrazine in natural water samples by a surface plasmon resonance immunosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 207-214.	1.9	97
74	Evaluation of a Newly Developed Enzyme-Linked Immunosorbent Assay for Determination of Linear Alkyl Benzenesulfonates in Wastewater Treatment Plants. Environmental Science & Enp; Technology, 2006, 40, 5064-5070.	4.6	13
75	Development of an Enzyme-Linked Immunosorbent Assay for the Determination of the Linear Alkylbenzene Sulfonates and Long-Chain Sulfophenyl Carboxylates Using Antibodies Generated by Pseudoheterologous Immunization. Analytical Chemistry, 2006, 78, 71-81.	3.2	28
76	Sequential Sonogashira and Suzuki Cross-Coupling Reactions in the Indole and Indazole Series. Synthesis, 2005, 2005, 771-780.	1.2	39
77	Scalable, Lithography-Free Plasmonic Metasurfaces by Nano-Patterned/Sculpted Thin Films for Biosensing. Frontiers in Sensors, 0, 3, .	1.7	4