Francesco Errico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4137022/publications.pdf

Version: 2024-02-01

159585 223800 2,214 55 30 46 citations h-index g-index papers 55 55 55 2164 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of mRNA and Protein Levels of CAP2, DLG1 and ADAM10 Genes in Post-Mortem Brain of Schizophrenia, Parkinsonâ∈™s and Alzheimerâ∈™s Disease Patients. International Journal of Molecular Sciences, 2022, 23, 1539.	4.1	10
2	Abnormal RasGRP1 Expression in the Post-Mortem Brain and Blood Serum of Schizophrenia Patients. Biomolecules, 2022, 12, 328.	4.0	4
3	Machine Learning algorithm unveils glutamatergic alterations in the post-mortem schizophrenia brain. NPJ Schizophrenia, 2022, 8, 8.	3.6	16
4	Prenatal and Early Postnatal Cerebral <scp>d</scp> -Aspartate Depletion Influences <scp>l</scp> -Amino Acid Pathways, Bioenergetic processes, and Developmental Brain Metabolism. Journal of Proteome Research, 2021, 20, 727-739.	3.7	8
5	High performance liquid chromatography determination of l-glutamate, l-glutamine and glycine content in brain, cerebrospinal fluid and blood serum of patients affected by Alzheimer's disease. Amino Acids, 2021, 53, 435-449.	2.7	14
6	Cerebrospinal fluid levels of Lâ€glutamate signal central inflammatory neurodegeneration in multiple sclerosis. Journal of Neurochemistry, 2021, 159, 857-866.	3.9	7
7	Dysfunctional d-aspartate metabolism in BTBR mouse model of idiopathic autism. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140531.	2.3	34
8	New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. International Journal of Molecular Sciences, 2020, 21, 8718.	4.1	17
9	Cerebrospinal fluid and serum d-serine concentrations are unaltered across the whole clinical spectrum of Alzheimer's disease. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140537.	2.3	19
10	New insights on the influence of free d-aspartate metabolism in the mammalian brain during prenatal and postnatal life. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140471.	2.3	15
11	Prenatal expression of d-aspartate oxidase causes early cerebral d-aspartate depletion and influences brain morphology and cognitive functions at adulthood. Amino Acids, 2020, 52, 597-617.	2.7	14
12	Selective demethylation of two CpG sites causes postnatal activation of the Dao gene and consequent removal of d-serine within the mouse cerebellum. Clinical Epigenetics, 2019, 11, 149.	4.1	22
13	The levels of the NMDA receptor co-agonist D-serine are reduced in the substantia nigra of MPTP-lesioned macaques and in the cerebrospinal fluid of Parkinson's disease patients. Scientific Reports, 2019, 9, 8898.	3.3	31
14	Free d-aspartate triggers NMDA receptor-dependent cell death in primary cortical neurons and perturbs JNK activation, Tau phosphorylation, and protein SUMOylation in the cerebral cortex of mice lacking d-aspartate oxidase activity. Experimental Neurology, 2019, 317, 51-65.	4.1	24
15	The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Frontiers in Psychiatry, 2018, 9, 559.	2.6	31
16	DNA methylation landscape of the genes regulating D-serine and D-aspartate metabolism in post-mortem brain from controls and subjects with schizophrenia. Scientific Reports, 2018, 8, 10163.	3.3	29
17	Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Scientific Reports, 2017, 7, 46288.	3.3	44
18	Decreased free d-aspartate levels are linked to enhanced d-aspartate oxidase activity in the dorsolateral prefrontal cortex of schizophrenia patients. NPJ Schizophrenia, 2017, 3, 16.	3.6	51

#	Article	IF	CITATIONS
19	Tracking the evolution of epialleles during neural differentiation and brain development: <i>D-Aspartate oxidase (i) as a model gene. Epigenetics, 2017, 12, 41-54.</i>	2.7	21
20	Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry. PLoS ONE, 2017, 12, e0179748.	2.5	13
21	Decreased Rhes mRNA levels in the brain of patients with Parkinson's disease and MPTP-treated macaques. PLoS ONE, 2017, 12, e0181677.	2.5	12
22	Age-Related Changes in d-Aspartate Oxidase Promoter Methylation Control Extracellular d-Aspartate Levels and Prevent Precocious Cell Death during Brain Aging. Journal of Neuroscience, 2016, 36, 3064-3078.	3.6	56
23	Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons. Neuropharmacology, 2016, 103, 69-78.	4.1	33
24	Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and †Schizophrenia-Like Behaviors' in Mice. Neuropsychopharmacology, 2016, 41, 916-927.	5 . 4	22
25	Neuromodulatory Activity of d-Aspartate in Mammals. , 2016, , 219-237.		O
26	Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion. Scientific Reports, 2015, 5, 10933.	3.3	38
27	D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice. BioMed Research International, 2015, 2015, 1-10.	1.9	27
28	D-aspartate dysregulation in Ddoâ^'/â^' mice modulates phencyclidine-induced gene expression changes of postsynaptic density molecules in cortex and striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2015, 62, 35-43.	4.8	11
29	d-Aspartate oxidase influences glutamatergic system homeostasis in mammalian brain. Neurobiology of Aging, 2015, 36, 1890-1902.	3.1	42
30	d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 7-17.	2.8	52
31	A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice. Translational Psychiatry, 2015, 5, e512-e512.	4.8	41
32	Dysfunctional dopaminergic neurotransmission in asocial BTBR mice. Translational Psychiatry, 2014, 4, e427-e427.	4.8	59
33	Free D-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Translational Psychiatry, 2014, 4, e417-e417.	4.8	47
34	DNA methylation state of BDNF gene is not altered in prefrontal cortex and striatum of schizophrenia subjects. Psychiatry Research, 2014, 220, 1147-1150.	3.3	19
35	Decreased levels of d-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. Journal of Psychiatric Research, 2013, 47, 1432-1437.	3.1	78
36	Abnormal <scp>NMDA</scp> receptor function exacerbates experimental autoimmune encephalomyelitis. British Journal of Pharmacology, 2013, 168, 502-517.	5 . 4	39

#	Article	IF	CITATIONS
37	Profile of gantenerumab and its potential in the treatment of Alzheimer's disease. Drug Design, Development and Therapy, 2013, 7, 1359.	4.3	28
38	Rhes, a striatal-enriched small G protein, mediates mTOR signaling and L-DOPA–induced dyskinesia. Nature Neuroscience, 2012, 15, 191-193.	14.8	99
39	New insights on the role of free d-aspartate in the mammalian brain. Amino Acids, 2012, 43, 1861-1871.	2.7	76
40	Persistent increase of d-aspartate in d-aspartate oxidase mutant mice induces a precocious hippocampal age-dependent synaptic plasticity and spatial memory decay. Neurobiology of Aging, 2011, 32, 2061-2074.	3.1	60
41	Increased d-aspartate brain content rescues hippocampal age-related synaptic plasticity deterioration of mice. Neurobiology of Aging, 2011, 32, 2229-2243.	3.1	70
42	Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Experimental Neurology, 2011, 232, 240-250.	4.1	39
43	Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia. Neurobiology of Disease, 2010, 38, 434-445.	4.4	92
44	Thyroid Hormones and <scp>D</scp> â€Aspartic Acid, <scp>D</scp> â€Aspartate Oxidase, <scp>D</scp> â€Aspartate Racemase, H ₂ O ₂ , and ROS in Rats and Mice. Chemistry and Biodiversity, 2010, 7, 1467-1478.	2.1	30
45	Role of Aberrant Striatal Dopamine D ₁ Receptor/cAMP/Protein Kinase A/DARPP32 Signaling in the Paradoxical Calming Effect of Amphetamine. Journal of Neuroscience, 2010, 30, 11043-11056.	3.6	66
46	Voluntary Exercise and Sucrose Consumption Enhance Cannabinoid CB1 Receptor Sensitivity in the Striatum. Neuropsychopharmacology, 2010, 35, 374-387.	5.4	74
47	D-Aspartate: An Atypical Amino Acid with Neuromodulatory Activity in Mammals. Reviews in the Neurosciences, 2009, 20, 429-40.	2.9	30
48	Increased levels of d-aspartate in the hippocampus enhance LTP but do not facilitate cognitive flexibility. Molecular and Cellular Neurosciences, 2008, 37, 236-246.	2.2	79
49	The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons. Molecular and Cellular Neurosciences, 2008, 37, 335-345.	2.2	68
50	d-Aspartate Prevents Corticostriatal Long-Term Depression and Attenuates Schizophrenia-Like Symptoms Induced by Amphetamine and MK-801. Journal of Neuroscience, 2008, 28, 10404-10414.	3.6	106
51	D-aspartate exerts an opposing role upon age-dependent NMDAR-related synaptic plasticity and memory decay. Nature Precedings, 2008, , .	0.1	0
52	A physiological mechanism to regulate d-aspartic acid and NMDA levels in mammals revealed by d-aspartate oxidase deficient mice. Gene, 2006, 374, 50-57.	2.2	62
53	A fast and sensitive method for measuring picomole levels of total free amino acids in very small amounts of biological tissues. Amino Acids, 2001, 20, 163-173.	2.7	47
54	The Role of d-Aspartic Acid and N-Methyl-d-Aspartic Acid in the Regulation of Prolactin Release*. Endocrinology, 2000, 141, 3862-3870.	2.8	135

#	Article	IF	CITATIONS
55	The Role of D-Aspartic Acid and N-Methyl-D-Aspartic Acid in the Regulation of Prolactin Release. Endocrinology, 2000, 141, 3862-3870.	2.8	53