Jessica A Hamerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413678/publications.pdf

Version: 2024-02-01

30 3,249 23 30 g-index

31 31 31 31 6414

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021, 184, 169-183.e17.	28.9	580
2	Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells. Nature Immunology, 2021, 22, 41-52.	14.5	110
3	The COVID-19 immune landscape is dynamically and reversibly correlated with disease severity. Journal of Clinical Investigation, 2021, 131, .	8.2	32
4	Signals governing monocyte differentiation during inflammation. Current Opinion in Immunology, 2021, 73, 16-24.	5.5	30
5	B Cell αv Integrins Regulate TLR-Driven Autoimmunity. Journal of Immunology, 2020, 205, 1810-1818.	0.8	9
6	The signaling adaptor BCAP inhibits NLRP3 and NLRC4 inflammasome activation in macrophages through interactions with Flightless-1. Science Signaling, 2019, 12, .	3.6	16
7	Cutting Edge: BCAP Promotes Lupus-like Disease and TLR-Mediated Type I IFN Induction in Plasmacytoid Dendritic Cells. Journal of Immunology, 2019, 202, 2529-2534.	0.8	17
8	Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes. Science, 2019, 363, .	12.6	82
9	A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome. Diabetes, 2018, 67, 946-959.	0.6	25
10	B cell adaptor for PI3-kinase (BCAP) modulates CD8+ effector and memory T cell differentiation. Journal of Experimental Medicine, 2018, 215, 2429-2443.	8.5	30
11	cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses. JCI Insight, 2018, 3, .	5.0	30
12	BCAP inhibits proliferation and differentiation of myeloid progenitors in the steady state and during demand situations. Blood, 2017, 129, 1503-1513.	1.4	9
13	Negative regulation of <scp>TLR</scp> signaling in myeloid cellsâ€"implications for autoimmune diseases. Immunological Reviews, 2016, 269, 212-227.	6.0	86
14	Cutting Edge: Direct Sensing of TLR7 Ligands and Type I IFN by the Common Myeloid Progenitor Promotes mTOR/PI3K-Dependent Emergency Myelopoiesis. Journal of Immunology, 2016, 197, 2577-2582.	0.8	27
15	Hematopoietic and nonhematopoietic cells promote Type I interferon―and TLR7â€dependent monocytosis during lowâ€dose LCMV infection. European Journal of Immunology, 2015, 45, 3064-3072.	2.9	4
16	The Tec Kinase–Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages. Journal of Immunology, 2015, 195, 246-256.	0.8	31
17	Cutting Edge: Type I IFN Drives Emergency Myelopoiesis and Peripheral Myeloid Expansion during Chronic TLR7 Signaling. Journal of Immunology, 2013, 190, 886-891.	0.8	64
18	Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. Journal of Experimental Medicine, 2013, 210, 2773-2789.	8.5	93

#	Article	IF	CITATIONS
19	î² ₂ integrins inhibit <scp>TLR</scp> responses by regulating <scp>NF</scp> â€î° <scp>B</scp> pathway and p38 <scp>MAPK</scp> activation. European Journal of Immunology, 2013, 43, 779-792.	2.9	69
20	B-cell adaptor for PI3K (BCAP) negatively regulates Toll-like receptor signaling through activation of PI3K. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 267-272.	7.1	73
21	TREMâ€⊋, triggering receptor expressed on myeloid cellâ€2, negatively regulates TLR responses in dendritic cells. European Journal of Immunology, 2012, 42, 176-185.	2.9	139
22	TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. Journal of Cell Biology, 2009, 184, 215-223.	5.2	208
23	The expanding roles of ITAM adapters $FcR^{\hat{j}3}$ and DAP12 in myeloid cells. Immunological Reviews, 2009, 232, 42-58.	6.0	104
24	Increased TLR responses in dendritic cells lacking the ITAM ontaining adapters DAP12 and FcRγ. European Journal of Immunology, 2008, 38, 166-173.	2.9	55
25	Inhibition of Immune Responses by ITAM-Bearing Receptors. Science Signaling, 2006, 2006, re1-re1.	3.6	119
26	Cutting Edge: Inhibition of TLR and FcR Responses in Macrophages by Triggering Receptor Expressed on Myeloid Cells (TREM)-2 and DAP12. Journal of Immunology, 2006, 177, 2051-2055.	0.8	375
27	Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nature Immunology, 2005, 6, 579-586.	14.5	292
28	NK cells in innate immunity. Current Opinion in Immunology, 2005, 17, 29-35.	5.5	261
29	Cutting Edge: Toll-Like Receptor Signaling in Macrophages Induces Ligands for the NKG2D Receptor. Journal of Immunology, 2004, 172, 2001-2005.	0.8	185
30	Serpin 2a Is Induced in Activated Macrophages and Conjugates to a Ubiquitin Homolog. Journal of Immunology, 2002, 168, 2415-2423.	0.8	83