
Xin Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4136763/publications.pdf Version: 2024-02-01

XIN ZHONC

#	Article	IF	CITATIONS
1	Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. Chemosphere, 2022, 287, 132313.	4.2	82
2	Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal. Chemosphere, 2022, 287, 132199.	4.2	92
3	Application of aluminosilicate clay mineral-based composites in photocatalysis. Journal of Environmental Sciences, 2022, 115, 190-214.	3.2	74
4	Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. Journal of Environmental Radioactivity, 2022, 242, 106798.	0.9	44
5	Removal of U(vi) from aqueous solutions by an effective bio-adsorbent from walnut shell and cellulose composite-stabilized iron sulfide nanoparticles. RSC Advances, 2022, 12, 2675-2683.	1.7	9
6	Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Advances, 2022, 4, 1246-1262.	2.2	30
7	Effect of Bi2WO6 nanoflowers on the U(VI) removal from water: Roles of adsorption and photoreduction. Journal of Environmental Chemical Engineering, 2022, 10, 107170.	3.3	17
8	Efficient Selective Removal of Radionuclides by Sorption and Catalytic Reduction Using Nanomaterials. Nanomaterials, 2022, 12, 1443.	1.9	7
9	High efficient photoreduction of U(VI) by a new synergistic photocatalyst of Fe3O4 nanoparticle on GO/g-C3N4 composites. Journal of Materials Research and Technology, 2022, 18, 4248-4255.	2.6	8
10	Adsorption-photocatalysis processes: The performance and mechanism of a bifunctional covalent organic framework for removing uranium ions from water. Applied Surface Science, 2022, 597, 153621.	3.1	22
11	Modified biochar: synthesis and mechanism for removal of environmental heavy metals. , 2022, 1, .		165
12	High-speed and efficient removal of uranium (VI) from aqueous solution by hydroxyapatite-modified ordered mesoporous carbon (CMK-3). Environmental Science and Pollution Research, 2022, 29, 78989-79001.	2.7	5
13	Recent developments of doped g-C ₃ N ₄ photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 2021, 51, 751-790.	6.6	346
14	Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760, 143333.	3.9	342
15	Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO22+ and TcO4â~' ions immobilization from aqueous solution. Journal of Hazardous Materials, 2021, 407, 124729.	6.5	86
16	The photocatalytic reduction of U(VI) into U(IV) by ZIF-8/g-C3N4 composites at visible light. Environmental Research, 2021, 196, 110349.	3.7	131
17	High effective enrichment of U(<scp>vi</scp>) from aqueous solutions on versatile crystalline carbohydrate polymer-functionalized graphene oxide. Dalton Transactions, 2021, 50, 14009-14017.	1.6	6
18	Construction of Core–Shell MOFs@COF Hybrids as a Platform for the Removal of UO ₂ ²⁺ and Eu ³⁺ Ions from Solution. ACS Applied Materials & Interfaces, 2021, 13, 13883-13895.	4.0	71

Xin Zhong

#	Article	IF	CITATIONS
19	Challenges of organic pollutant photocatalysis by biochar-based catalysts. Biochar, 2021, 3, 117-123.	6.2	174
20	Reductive and adsorptive elimination of U(VI) ions in aqueous solution by SFeS@Biochar composites. Environmental Science and Pollution Research, 2021, 28, 55176-55185.	2.7	49
21	Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling. Chemosphere, 2021, 274, 129743.	4.2	130
22	Synthesis and application of perovskite-based photocatalysts in environmental remediation: A review. Journal of Molecular Liquids, 2021, 334, 116029.	2.3	52
23	The study of MnO2 with different crystalline structures for U(VI) elimination from aqueous solution. Journal of Molecular Liquids, 2021, 335, 116296.	2.3	8
24	Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch. Chemosphere, 2021, 279, 130539.	4.2	139
25	Extremely stable amidoxime functionalized covalent organic frameworks for uranium extraction from seawater with high efficiency and selectivity. Science Bulletin, 2021, 66, 1994-2001.	4.3	172
26	Removal of organic compounds by nanoscale zero-valent iron and its composites. Science of the Total Environment, 2021, 792, 148546.	3.9	242
27	Constructing new Fe3O4@MnO with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere, 2021, 283, 131241.	4.2	60
28	Functionalized mesoporous carbon nanospheres for efficient uranium extraction from aqueous solutions. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100510.	1.7	1
29	Recent advances in metal-organic framework membranes for water treatment: A review. Science of the Total Environment, 2021, 800, 149662.	3.9	450
30	In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction. Separation and Purification Technology, 2021, 279, 119627.	3.9	52
31	High Sorption and Selective Extraction of Actinides from Aqueous Solutions. Molecules, 2021, 26, 7101.	1.7	2
32	Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Applied Surface Science, 2020, 504, 144403.	3.1	112
33	The fabrication of 3D hierarchical flower-like δ-MnO ₂ @COF nanocomposites for the efficient and ultra-fast removal of UO ₂ ²⁺ ions from aqueous solution. Environmental Science: Nano, 2020, 7, 3303-3317.	2.2	93
34	The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. Journal of Hazardous Materials, 2020, 393, 122353.	6.5	220
35	Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa). Chemosphere, 2020, 254, 126898.	4.2	55
36	Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Science of the Total Environment, 2019, 685, 986-996.	3.9	101

Xin Zhong

#	Article	IF	CITATIONS
37	Enhanced Photoreduction of U(VI) on C ₃ N ₄ by Cr(VI) and Bisphenol A: ESR, XPS, and EXAFS Investigation. Environmental Science & Technology, 2019, 53, 6454-6461.	4.6	269
38	Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 2019, 1, 45-73.	6.2	255
39	Adsorptive and reductive removal of U(VI) by Dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chemical Engineering Journal, 2019, 366, 368-377.	6.6	200
40	Plasma-enhanced amidoxime/magnetic graphene oxide for efficient enrichment of U(VI) investigated by EXAFS and modeling techniques. Chemical Engineering Journal, 2019, 357, 66-74.	6.6	53
41	XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate. Chemosphere, 2018, 201, 764-771.	4.2	67
42	Synthesis of magnetic Fe 3 O 4 /CFA composites for the efficient removal of U(VI) from wastewater. Chemical Engineering Journal, 2017, 320, 448-457.	6.6	108
43	The adsorption of U(VI) on carbonaceous nanofibers: A combined batch, EXAFS and modeling techniques. Separation and Purification Technology, 2017, 175, 140-146.	3.9	38