Thomas Lilley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413666/publications.pdf

Version: 2024-02-01

		304743	330143
57	1,692	22	37
papers	citations	h-index	g-index
			1000
66	66	66	1880
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cooling of bat hibernacula to mitigate whiteâ€nose syndrome. Conservation Biology, 2022, 36, .	4.7	18
2	Contrasting Effects of Chronic Anthropogenic Disturbance on Activity and Species Richness of Insectivorous Bats in Neotropical Dry Forest. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	5
3	The promise and perils of engineering cave climates: response to Turner et al Conservation Biology, 2022, 36, e13927.	4.7	6
4	No Sign of Infection in Free-Ranging Myotis austroriparius Hibernating in the Presence of Pseudogymnoascus destructans in Alabama. Southeastern Naturalist, 2021, 20, .	0.4	1
5	Winter activity of boreal bats. Mammalian Biology, 2021, 101, 609-618.	1.5	13
6	Ten-year projection of white-nose syndrome disease dynamics at the southern leading-edge of infection in North America. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210719.	2.6	8
7	Disease Avoidance Model Explains the Acceptance of Cohabitation With Bats During the COVID-19 Pandemic. Frontiers in Psychology, 2021, 12, 635874.	2.1	6
8	A conservation roadmap for the subterranean biome. Conservation Letters, 2021, 14, e12834.	5.7	31
9	Heterothermy and antifungal responses in bats. Current Opinion in Microbiology, 2021, 62, 61-67.	5.1	3
10	The Winter Worries of Bats: Past and Present Perspectives on Winter Habitat and Management of Cave Hibernating Bats. Fascinating Life Sciences, 2021, , 209-221.	0.9	4
11	First record of a Nathusius' pipistrelle (<i>Pipistrellus nathusii</i>) overwintering at a latitude above 60°N. Mammalia, 2021, 85, 74-78.	0.7	12
12	Next $\hat{a} \in g$ eneration ultrasonic recorders facilitate effective bat activity and distribution monitoring by citizen scientists. Ecosphere, 2021, 12, .	2.2	5
13	First Report of Coronaviruses in Northern European Bats. Vector-Borne and Zoonotic Diseases, 2020, 20, 155-158.	1.5	22
14	Optimal hibernation theory. Mammal Review, 2020, 50, 91-100.	4.8	64
15	A global class reunion with multiple groups feasting on the declining insect smorgasbord. Scientific Reports, 2020, 10, 16595.	3.3	9
16	Fundamental research questions in subterranean biology. Biological Reviews, 2020, 95, 1855-1872.	10.4	86
17	Bats and Wind Farms: The Role and Importance of the Baltic Sea Countries in the European Context of Power Transition and Biodiversity Conservation. Environmental Science & European Context of 10385-10398.	10.0	21
18	Population Connectivity Predicts Vulnerability to White-Nose Syndrome in the Chilean Myotis (<i>Myotis chiloensis</i>) - A Genomics Approach. G3: Genes, Genomes, Genetics, 2020, 10, 2117-2126.	1.8	9

#	Article	IF	CITATIONS
19	Threats from the air: Damselfly predation on diverse prey taxa. Journal of Animal Ecology, 2020, 89, 1365-1374.	2.8	14
20	Withinâ€season changes in habitat use of forestâ€dwelling boreal bats. Ecology and Evolution, 2020, 10, 4164-4174.	1.9	31
21	Genome-Wide Changes in Genetic Diversity in a Population of <i>Myotis lucifugus</i> Affected by White-Nose Syndrome. G3: Genes, Genomes, Genetics, 2020, 10, 2007-2020.	1.8	10
22	Resistance is futile: RNA-sequencing reveals differing responses to bat fungal pathogen in Nearctic Myotis lucifugus and Palearctic Myotis myotis. Oecologia, 2019, 191, 295-309.	2.0	23
23	The Klingon batbugs: Morphological adaptations in the primitive bat bugs, <i>Bucimex chilensis </i> and <i>Primicimex cavernis</i> , including updated phylogeny of Cimicidae. Ecology and Evolution, 2019, 9, 1736-1749.	1.9	13
24	Metal and metalloid exposure and oxidative status in free-living individuals of Myotis daubentonii. Ecotoxicology and Environmental Safety, 2019, 169, 93-102.	6.0	15
25	Energy conserving thermoregulatory patterns and lower disease severity in a bat resistant to the impacts of white-nose syndrome. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 163-176.	1.5	42
26	Table for five, please: Dietary partitioning in boreal bats. Ecology and Evolution, 2018, 8, 10914-10937.	1.9	71
27	Landscape structure and ecology influence the spread of a bat fungal disease. Functional Ecology, 2018, 32, 2483-2496.	3.6	27
28	Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Molecular Ecology, 2018, 27, 3727-3743.	3.9	34
29	Vitamin profiles in two free-living passerine birds under a metal pollution gradient – A calcium supplementation experiment. Ecotoxicology and Environmental Safety, 2017, 138, 242-252.	6.0	12
30	Molecular Detection of <i>Candidatus </i> Bartonella mayotimonensis in North American Bats. Vector-Borne and Zoonotic Diseases, 2017, 17, 243-246.	1.5	41
31	Immune responses in hibernating little brown myotis (<i>Myotis lucifugus </i>) with white-nose syndrome. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162232.	2.6	44
32	Evidence of the Migratory Bat, Pipistrellus nathusii, Aggregating to the Coastlines in the Northern Baltic Sea. Acta Chiropterologica, 2017, 19, 127.	0.6	27
33	<i>Pseudogymnoascus destructans</i> transcriptome changes during white-nose syndrome infections. Virulence, 2017, 8, 1695-1707.	4.4	22
34	Oxidative status in relation to metal pollution and calcium availability in pied flycatcher nestlings – A calcium manipulation experiment. Environmental Pollution, 2017, 229, 448-458.	7.5	15
35	Chlamydia-Like Organisms (CLOs) in Finnish Ixodes ricinus Ticks and Human Skin. Microorganisms, 2016, 4, 28.	3.6	23
36	Effects of dietary lead exposure on vitamin levels in great tit nestlings – An experimental manipulation. Environmental Pollution, 2016, 213, 688-697.	7.5	19

#	Article	IF	CITATIONS
37	White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Frontiers in Zoology, 2016, 13, 12.	2.0	42
38	What you need is what you eat? Prey selection by the bat <i>Myotis daubentonii</i> Ecology, 2016, 25, 1581-1594.	3.9	116
39	Antibodies to <i>Pseudogymnoascus destructans</i> are not sufficient for protection against whiteâ€nose syndrome. Ecology and Evolution, 2015, 5, 2203-2214.	1.9	32
40	The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis. PLoS Pathogens, 2015, 11, e1005168.	4.7	88
41	Molecular Detection of Candidatus Bartonella hemsundetiensis in Bats. Vector-Borne and Zoonotic Diseases, 2015, 15, 706-708.	1.5	41
42	Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus) Tj ETQq0 0 0 24-34.	rgBT /Ove	erlock 10 Tf 50 24
43	Bats as Reservoir Hosts of Human Bacterial Pathogen, <i>Bartonella mayotimonensis </i> Infectious Diseases, 2014, 20, 960-967.	4.3	152
44	Phenology of Migratory Bat Activity Across the Baltic Sea and the South-Eastern North Sea. Acta Chiropterologica, 2014, 16, 139-147.	0.6	48
45	The effect of overwintering temperature on the body energy reserves and phenoloxidase activity of bumblebee Bombus lucorum queens. Insectes Sociaux, 2014, 61, 265-272.	1.2	31
46	Interspecific variation in redox status regulation and immune defence in five bat species: the role of ectoparasites. Oecologia, 2014, 175, 811-823.	2.0	22
47	Resistance to oxidative damage but not immunosuppression by organic tin compounds in natural populations of Daubenton's bats (Myotis daubentonii). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013, 157, 298-305.	2.6	23
48	Bat rabies surveillance in Finland. BMC Veterinary Research, 2013, 9, 174.	1.9	15
49	Population Genetics of Daubenton's Bat (<i>Myotis daubentonii</i>) in the Archipelago Sea, SW Finland. Annales Zoologici Fennici, 2013, 50, 303-315.	0.6	20
50	Next Generation Sequencing of Fecal DNA Reveals the Dietary Diversity of the Widespread Insectivorous Predator Daubenton's Bat (Myotis daubentonii) in Southwestern Finland. PLoS ONE, 2013, 8, e82168.	2.5	74
51	Impact of Tributyltin on Immune Response and Life History Traits of <i>Chironomus riparius</i> Single and Multigeneration Effects and Recovery from Pollution. Environmental Science & Enp; Technology, 2012, 46, 7382-7389.	10.0	31
52	Reed beds may facilitate transfer of tributyltin from aquatic to terrestrial ecosystems through insect vectors in the Archipelago Sea, SW Finland. Environmental Toxicology and Chemistry, 2012, 31, 1781-1787.	4.3	12
53	Sediment organic tin contamination promotes impoverishment of non-biting midge species communities in the Archipelago Sea, S-W Finland. Ecotoxicology, 2012, 21, 1333-1344.	2.4	15
54	First encounter of European bat lyssavirus type 2 (EBLV-2) in a bat in Finland. Epidemiology and Infection, 2010, 138, 1581-1585.	2.1	36

THOMAS LILLEY

#	Article	lF	CITATION
55	Maternal corticosterone but not testosterone level is associated with the ratio of second-to-fourth digit length (2D:4D) in field vole offspring (Microtus agrestis). Physiology and Behavior, 2010, 99, 433-437.	2.1	30
56	Digit length ratio (2D/4D): comparing measurements from X-rays and photographs in field voles (Microtus agrestis). Behavioral Ecology and Sociobiology, 2009, 63, 1539-1547.	1.4	13
57	Maternal 2nd to 4th digit ratio does not predict lifetime offspring sex ratio at birth. American Journal of Human Biology, 2008, 20, 700-703.	1.6	12