
JoaquÃ-n Santander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413645/publications.pdf Version: 2024-02-01

ΙΟΛΟΙΙΑΝ SANTANDER

#	Article	IF	CITATIONS
1	The ATLAS Experiment at the CERN Large Hadron Collider. Journal of Instrumentation, 2008, 3, S08003-S08003.	1.2	1,752
2	Multi-range silicon micromachined flow sensor. Sensors and Actuators A: Physical, 2004, 110, 282-288.	4.1	112
3	Non-selective NDIR array for gas detection. Sensors and Actuators B: Chemical, 2007, 127, 69-73.	7.8	67
4	Tolerant Chalcogenide Cathodes of Membraneless Micro Fuel Cells. ChemSusChem, 2012, 5, 1488-1494.	6.8	50
5	Sub-ppm gas sensor detection via spiral μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 132, 149-154.	7.8	49
6	Influence of current collectors design on the performance of a silicon-based passive micro direct methanol fuel cell. Journal of Power Sources, 2009, 194, 391-396.	7.8	44
7	Combined performance tests before installation of the ATLAS Semiconductor and Transition Radiation Tracking Detectors. Journal of Instrumentation, 2008, 3, P08003-P08003.	1.2	42
8	Fabrication and characterization of a passive silicon-based direct methanol fuel cell. Microsystem Technologies, 2008, 14, 535-541.	2.0	41
9	Sensitivity improvement of a microcantilever based mass sensor. Microelectronic Engineering, 2009, 86, 1187-1189.	2.4	40
10	Towards a compact SU-8 micro-direct methanol fuel cell. Journal of Power Sources, 2010, 195, 8110-8115.	7.8	37
11	A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results. Sensors and Actuators B: Chemical, 2008, 134, 551-558.	7.8	36
12	Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136, 546-554.	7.8	36
13	Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sensors and Actuators B: Chemical, 2008, 132, 540-544.	7.8	35
14	Optimized technology for the fabrication of piezoresistive pressure sensors. Journal of Micromechanics and Microengineering, 2000, 10, 204-208.	2.6	32
15	Localized growth and in situ integration of nanowires for device applications. Chemical Communications, 2012, 48, 4734.	4.1	32
16	Results on the reliability of silicon micromachined structures for semiconductor gas sensors. Sensors and Actuators B: Chemical, 2001, 77, 409-415.	7.8	29
17	Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. International Journal of Hydrogen Energy, 2014, 39, 5406-5413.	7.1	25
18	Planar Thermoelectric Microgenerators Based on Silicon Nanowires. Journal of Electronic Materials, 2011, 40, 851-855.	2.2	24

JoaquÃn Santander

#	Article	IF	CITATIONS
19	Transitioning from Si to SiGe Nanowires as Thermoelectric Material in Silicon-Based Microgenerators. Nanomaterials, 2021, 11, 517.	4.1	24
20	Improvement of the gas sensor response via silicon $\hat{l}^1\!\!/_4$ -preconcentrator. Sensors and Actuators B: Chemical, 2007, 127, 288-294.	7.8	23
21	Low temperature humidity sensor based on Ge nanowires selectively grown on suspended microhotplates. Sensors and Actuators B: Chemical, 2017, 243, 669-677.	7.8	23
22	A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results. Sensors and Actuators B: Chemical, 2012, 166-167, 338-348.	7.8	21
23	A compact optical multichannel system for ethylene monitoring. Microsystem Technologies, 2008, 14, 637-644.	2.0	19
24	Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132, 498-507.	7.8	19
25	Accurate contact resistivity extraction on Kelvin structures with upper and lower resistive layers. IEEE Transactions on Electron Devices, 2000, 47, 1431-1439.	3.0	18
26	Exploration of the metrological performance of a gas detector based on an array of unspecific infrared filters. Sensors and Actuators B: Chemical, 2006, 116, 183-191.	7.8	18
27	Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149, 65-73.	4.1	18
28	Selective CoSe 2 /C cathode catalyst for passive air-breathing alkaline anion exchange membrane μ-direct methanol fuel cell (AEM-μDMFC). International Journal of Hydrogen Energy, 2016, 41, 19595-19600.	7.1	17
29	Bump bonding of pixel systems. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 473, 95-101.	1.6	16
30	Qualitative and quantitative substance discrimination using a CMOS compatible non-specific NDIR microarray. Sensors and Actuators B: Chemical, 2009, 141, 396-403.	7.8	15
31	New approach for batch microfabrication of silicon-based micro fuel cells. Microsystem Technologies, 2014, 20, 341-348.	2.0	15
32	AFM thermal imaging as an optimization tool for a bulk micromachined thermopile. Sensors and Actuators A: Physical, 2004, 115, 440-446.	4.1	14
33	Finite-element analysis of a miniaturized ion mobility spectrometer for security applications. Sensors and Actuators B: Chemical, 2012, 170, 13-20.	7.8	14
34	A micro alkaline direct ethanol fuel cell with platinum-free catalysts. Journal of Micromechanics and Microengineering, 2013, 23, 115006.	2.6	14
35	Comprehensive characterization and understanding of micro-fuel cells operating at high methanol concentrations. Beilstein Journal of Nanotechnology, 2015, 6, 2000-2006.	2.8	14
36	Feasibility of a flip-chip approach to integrate an IR filter and an IR detector in a future gas detection cell. Microsystem Technologies, 2004, 10, 382-386.	2.0	13

JoaquÃn Santander

#	Article	IF	CITATIONS
37	Characterization of thermal conductivity in thin film multilayered membranes. Thin Solid Films, 2005, 484, 328-333.	1.8	13
38	The integration and engineering of the ATLAS SemiConductor Tracker Barrel. Journal of Instrumentation, 2008, 3, P10006-P10006.	1.2	13
39	Accurate extraction of contact resistivity on Kelvin D-resistor structures using universal curves from simulation. IEEE Transactions on Electron Devices, 1993, 40, 944-950.	3.0	12
40	Use of boron heavily doped silicon slabs for gas sensors based on free-standing membranes. Sensors and Actuators B: Chemical, 2008, 130, 538-545.	7.8	11
41	Mirror electrostatic actuation of a medium-infrared tuneable Fabry-Perot interferometer based on a surface micromachining process. Sensors and Actuators A: Physical, 2005, 123-124, 584-589.	4.1	10
42	Mechanical characterization of thermal flow sensors membranes. Sensors and Actuators A: Physical, 2006, 125, 260-266.	4.1	10
43	Hybrid polymer electrolyte membrane for silicon-based micro fuel cells integration. Journal of Micromechanics and Microengineering, 2009, 19, 065006.	2.6	10
44	A technology for the monolithic fabrication of a pressure sensor and related circuitry. Sensors and Actuators A: Physical, 1995, 46, 133-136.	4.1	9
45	Protection of MOS capacitors during anodic bonding. Journal of Micromechanics and Microengineering, 2002, 12, 361-367.	2.6	9
46	<title>A highly sensitive IR-optical sensor for ethylene-monitoring</title> . , 2005, 5836, 452.		9
47	Test structures for MCM-D technology characterization. IEEE Transactions on Semiconductor Manufacturing, 1999, 12, 184-192.	1.7	8
48	Multisensor chip for gas concentration monitoring in a flowing gas mixture. Sensors and Actuators B: Chemical, 2005, 107, 688-694.	7.8	8
49	Progress on monolithic integration of cheap IR FPAs of polycrystalline PbSe. , 2005, , .		8
50	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. Microsystem Technologies, 2012, 18, 1147-1154.	2.0	8
51	Novel results on fluence dependence and annealing behavior of oxygenated and non-oxygenated silicon detectors. IEEE Transactions on Nuclear Science, 2002, 49, 1377-1382.	2.0	7
52	Influence of the internal gas flow distribution on the efficiency of a μ-preconcentrator. Sensors and Actuators B: Chemical, 2008, 135, 52-56.	7.8	7
53	Feasibility of a flip-chip approach to integrate an IR filter and an IR detector in a future gas detection cell. Microsystem Technologies, 2004, 10, 382-386.	2.0	7
54	A methodology to extract dynamic compact thermal models under time-varying boundary conditions: application to a thermopile based IR sensor. Microsystem Technologies, 2005, 12, 21-29.	2.0	6

#	Article	IF	CITATIONS
55	A high sensitivity silicon microcantilever based mass sensor. , 2008, , .		6
56	A monolithic micro fuel cell based on a functionalized porous silicon membrane. , 2010, , .		6
57	A test structure for the design of thermal flow sensors. , 0, , .		5
58	Fresnel lenses: study and fabrication in silicon technology for medium-IR applications. , 2006, 6186, 233.		5
59	Universal surfaces for the accurate contact resistivity extraction on Kelvin structures with upper and lower resistive layers. , 0, , .		4
60	New evidence of dominant processing effects in standard and oxygenated silicon diodes after neutron irradiation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 512, 52-59.	1.6	4
61	Monolithic micro fuel cells as integrated power sources in MEMS. , 2009, , .		4
62	Extraction of contact resistivity on Kelvin L-resistor structures. IEEE Transactions on Electron Devices, 1994, 41, 1073-1074.	3.0	3
63	CMOS integrated pressure sensor optimization using electrical network simulator-FEM tool coupling. Journal of Micromechanics and Microengineering, 1999, 9, 109-112.	2.6	3
64	Reliability evaluation of a silicon-on-silicon MCM-D package. Microelectronics Reliability, 2001, 41, 887-899.	1.7	3
65	Thermal AFM: a thermopile case study. Ultramicroscopy, 2004, 101, 153-159.	1.9	3
66	Micro-cantilevers for gas sensing. , 0, , .		3
67	Thermopile sensor array for an electronic nose integrated non-selective NDIR gas detection system. , 0, , .		3
68	A compact optical ethylene monitoring system. , 2007, , .		3
69	Modelling a P-FAIMS with multiphysics FEM. Journal of Mathematical Chemistry, 2012, 50, 359-373.	1.5	3
70	Managing Heat Transfer Issues in Thermoelectric Microgenerators. , 0, , .		3
71	Microsystems for the agrofood field. Journal of Physics: Conference Series, 2005, 10, 267-272.	0.4	2
72	Comparison of model order reduction methodologies for thermal problems. , 0, , .		2

#	Article	IF	CITATIONS
73	Thermal conductivity determination of micromachined membranes. , 0, , .		2
74	Design and Fabrication of Micromachined Silicon Based Mid Infrared Multilenses for Gas Sensing Applications. , 2007, , .		2
75	A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results. , 2007, , .		2
76	Micro and nanotechnologies for the development of an integrated chromatographic system. , 2007, , .		2
77	Modeling vapor detection in a micro ion mobility spectrometer for security applications. Procedia Engineering, 2010, 5, 1236-1239.	1.2	2
78	Overview of Direct Liquid Oxidation Fuel Cells and its Application as Micro-Fuel Cells. , 2018, , 129-174.		2
79	An easy technique for determining diffusion and generation-recombination components of the current of pn junctions for better modelling. , 0, , .		1
80	Test structures for MCM-D technology characterization. , 0, , .		1
81	Extensive electrical and thermal characterization of an MCM-D technology. IEEE Transactions on Components and Packaging Technologies, 2002, 25, 112-119.	1.3	1
82	Modelling of charging effects caused by anodic bonding in packaged MOS devices. Electronics Letters, 2002, 38, 1596.	1.0	1
83	Semiconductor gas sensor compatibility with CMOS technologies. , 2003, , .		1
84	Optical simulation of a MOEMS based tuneable Fabry-Perot interferometer. , 0, , .		1
85	Influence of the doping material on the benzene detection. , 2006, , .		1
86	Performance and Design Issues of a Silicon Microfabricated Fuel Cell. , 2007, , .		1
87	Dimension-Scaling of Microcantilevers Resonators. , 2007, , .		1
88	Planar Micro Ion Mobility Spectrometer modelling for explosives detection. , 2011, , .		1
89	A moveable shielding box adaptable to commercial automatic wafer probers. , 0, , .		0
90	A digital test structure for simultaneous bird's beak length and misalignment measurement in polysilicon emitter bipolar technologies. , 0, , .		0

#	Article	IF	CITATIONS
91	Novel results on fluence dependence and annealing behaviour of oxygenated and non-oxygenated silicon detectors. , 0, , .		0
92	Optimization of a 0.61¼m, single polysilicon emitter bipolar technology versus narrow emitter effects. Microelectronics Journal, 2002, 33, 659-665.	2.0	0
93	Feasibility of a flip chip approach to integrate an IR filter and an IR detector in a future gas detection cell. , 0, , .		0
94	FEM simulations to estimate the polymer thickness deposited over mechanical resonators. , 0, , .		0
95	<title>Non-selective NDIR array for gas detection</title> ., 2005, , .		0
96	Mechanical characterisation of micro-resonator structures. , 0, , .		0
97	Towards a Microtechnology based 4-channel infrared detector unit for a miniaturised NDIR system. , 2006, , .		0
98	Fabrication and characterization of a passive silicon-based direct methanol fuel cell. , 2007, , .		0
99	A Silicon-Based Direct Methanol Micro Fuel Cell. , 2007, , .		0
100	Silicon μ-preconcentrator for improved gas detection. , 2007, , .		0
101	Towards a monolithic micro direct methanol fuel cell. , 2008, , .		0
102	Thermoelectric MEMS sensors for natural gas analysis. , 2008, , .		0
103	Preconcentrator-based sensor Ã,µ-system for low-level benzene detection. Proceedings of SPIE, 2008, , .	0.8	0
104	Simulation of a planar micro Ion Mobility Spectrometer for security applications. , 2010, , .		0
105	Methods and Techniques for the Fabrication of Gas Sensing Devices from Nanowires. Procedia Engineering, 2011, 25, 1409-1412.	1.2	0
106	A MEMS-based thermal infrared emitter for an integrated NDIR spectrometer. , 2011, , .		0
107	Contact end resistance test structure applied for nanocontact measurements. Microelectronic Engineering, 2012, 99, 18-22.	2.4	0
108	Sensors and Micro and Nano Technologies for the Food Sector. , 2013, , .		0

#	Article	IF	CITATIONS
109	Site-selectively Grown p-type Ge NWs as a Gas Sensor. Procedia Engineering, 2016, 168, 1056-1060.	1.2	Ο
110	Harvesting performance of a planar thermoelectric microgenerator with a compact design. , 2021, , .		0

8