William Dichtel

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4136442/william-dichtel-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

188	19,841	70	139
papers	citations	h-index	g-index
250 ext. papers	23,122 ext. citations	13.2 avg, IF	7.41 L-index

#	Paper	IF	Citations
188	Arene-perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes <i>Chemical Science</i> , 2022 , 13, 2475-2480	9.4	1
187	Cyclophane-based two-dimensional polymer formed by an interfacial click reaction. <i>Cell Reports Physical Science</i> , 2022 , 100806	6.1	1
186	A Semiconducting Two-dimensional Polymer as an Organic Electrochemical Transistor Active Layer <i>Advanced Materials</i> , 2022 , e2110703	24	4
185	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. <i>Materials Horizons</i> , 2021 ,	14.4	6
184	Controlled n-Doping of Naphthalene Diimide-Based Two-Dimensional Polymers. <i>Advanced Materials</i> , 2021 , e2101932	24	5
183	Two-Dimensional Polymers and Polymerizations. Chemical Reviews, 2021,	68.1	24
182	Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks <i>Chemical Science</i> , 2021 , 12, 16014-16022	9.4	4
181	Identifying the physicochemical properties of Eyclodextrin polymers that determine the adsorption of perfluoroalkyl acids <i>Water Research</i> , 2021 , 209, 117938	12.5	2
180	Lithium-Conducting Self-Assembled Organic Nanotubes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17655-17665	16.4	2
179	Product analysis and insight into the mechanochemical destruction of anionic PFAS with potassium hydroxide. <i>Journal of Hazardous Materials Advances</i> , 2021 , 3, 100014		1
178	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. <i>Nature Materials</i> , 2021 , 20, 1142-1148	27	30
177	Quantitative Description of the Lateral Growth of Two-Dimensional Covalent Organic Frameworks Reveals Self-Templation Effects 2021 , 3, 398-405		4
176	Two-Dimensional Covalent Organic Framework Solid Solutions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7081-7087	16.4	4
175	Diverse Proton-Conducting Nanotubes via a Tandem Macrocyclization and Assembly Strategy. Journal of the American Chemical Society, 2021 , 143, 8145-8153	16.4	4
174	Trends in the thermal stability of two-dimensional covalent organic frameworks. <i>Faraday Discussions</i> , 2021 , 225, 226-240	3.6	14
173	Transient Catenation in a Zirconium-Based Metal-Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1503-1512	16.4	9
172	Anisotropic Transient Disordering of Colloidal, Two-Dimensional CdSe Nanoplatelets upon Optical Excitation. <i>Nano Letters</i> , 2021 , 21, 1288-1294	11.5	4

(2020-2021)

171	Postsynthetic Modification of a Covalent Organic Framework Achieved via Strain-Promoted Cycloaddition. <i>Journal of the American Chemical Society</i> , 2021 , 143, 649-656	16.4	15	
170	Polycrystalline Covalent Organic Framework Films Act as Adsorbents, Not Membranes. <i>Journal of the American Chemical Society</i> , 2021 , 143, 1466-1473	16.4	36	
169	Mapping Grains, Boundaries, and Defects in 2D Covalent Organic Framework Thin Films <i>Chemistry of Materials</i> , 2021 , 33, 1341-1352	9.6	8	
168	Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38680-38687	9.5	2	
167	A Naphthalene Diimide Covalent Organic Framework: Comparison of Cathode Performance in Lithium-Ion Batteries with Amorphous Cross-linked and Linear Analogues, and Its Use in Aqueous Lithium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 350-356	6.1	10	
166	Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: Cli Coupling Selectivity and Monomer Metal Interactions. <i>Chemistry of Materials</i> , 2020 , 32, 10688-10696	9.6	3	
165	Electronically Coupled 2D Polymer/MoS Heterostructures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21131-21139	16.4	8	
164	Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. <i>Water Research</i> , 2020 , 182, 115950	12.5	27	
163	In Situ Grazing-Incidence Wide-Angle Scattering Reveals Mechanisms for Phase Distribution and Disorientation in 2D Halide Perovskite Films. <i>Advanced Materials</i> , 2020 , 32, e2002812	24	51	
162	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. <i>ACS Energy Letters</i> , 2020 , 5, 826-832	20.1	91	
161	Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and Ecyclodextrin polymer adsorbents. <i>Water Research</i> , 2020 , 173, 115551	12.5	21	
160	Reprocessing Postconsumer Polyurethane Foam Using Carbamate Exchange Catalysis and Twin-Screw Extrusion. <i>ACS Central Science</i> , 2020 , 6, 921-927	16.8	47	
159	Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. <i>Nano Letters</i> , 2020 , 20, 963-970	11.5	10	
158	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. <i>Journal of the American Chemical Society</i> , 2020 , 142, 783-791	16.4	90	
157	Supramolecular polymerization provides non-equilibrium product distributions of imine-linked macrocycles. <i>Chemical Science</i> , 2020 , 11, 1957-1963	9.4	11	
156	Acid Exfoliation of Imine-linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. <i>Angewandte Chemie</i> , 2020 , 132, 5203-5209	3.6	15	
155	Nucleation-Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1367-1374	16.4	36	
154	Acid Exfoliation of Imine-linked Covalent Organic Frameworks Enables Solution Processing into Crystalline Thin Films. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5165-5171	16.4	76	

153	Phenazine-Based Covalent Organic Framework Cathode Materials with High Energy and Power Densities. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16-20	16.4	125
152	Rapid Synthesis of High Surface Area Imine-Linked 2D Covalent Organic Frameworks by Avoiding Pore Collapse During Isolation. <i>Advanced Materials</i> , 2020 , 32, e1905776	24	71
151	Evaluating the Removal of Per- and Polyfluoroalkyl Substances from Contaminated Groundwater with Different Adsorbents Using a Suspect Screening Approach. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 954-960	11	14
150	New Mechanistic Insights into the Formation of Imine-Linked Two-Dimensional Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18637-18644	16.4	30
149	Best Practices for Evaluating New Materials as Adsorbents for Water Treatment 2020 , 2, 1532-1544		18
148	Large Exciton Diffusion Coefficients in Two-Dimensional Covalent Organic Frameworks with Different Domain Sizes Revealed by Ultrafast Exciton Dynamics. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14957-14965	16.4	25
147	Spin and Phonon Design in Modular Arrays of Molecular Qubits. <i>Chemistry of Materials</i> , 2020 , 32, 1020	0-150206	5 10
146	Reprocessable Cross-Linked Polymer Networks: Are Associative Exchange Mechanisms Desirable?. <i>ACS Central Science</i> , 2020 , 6, 1488-1496	16.8	76
145	Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. <i>Chemistry of Materials</i> , 2020 , 32, 9228-9237	9.6	5
144	Incorporating Functionalized Cellulose to Increase the Toughness of Covalent Adaptable Networks. <i>ACS Applied Materials & Discrete Services</i> , 2020 , 12, 44110-44116	9.5	9
143	ECyclodextrin Polymers with Different Cross-Linkers and Ion-Exchange Resins Exhibit Variable Adsorption of Anionic, Zwitterionic, and Nonionic PFASs. <i>Environmental Science & Environmental Science &</i>	10.3	22
142	Cyclodextrin Polymers with Nitrogen-Containing Tripodal Crosslinkers for Efficient PFAS Adsorption 2020 , 2, 1240-1245		26
141	High-Sensitivity Acoustic Molecular Sensors Based on Large-Area, Spray-Coated 2D Covalent Organic Frameworks. <i>Advanced Materials</i> , 2020 , 32, e2004205	24	26
140	Polymerized Molecular Receptors as Adsorbents to Remove Micropollutants from Water. <i>Accounts of Chemical Research</i> , 2020 , 53, 2314-2324	24.3	23
139	Transient Lattice Response upon Photoexcitation in CuInSe Nanocrystals with Organic or Inorganic Surface Passivation. <i>ACS Nano</i> , 2020 , 14, 13548-13556	16.7	8
138	Reducing the Pore Size of Covalent Organic Frameworks in Thin-Film Composite Membranes Enhances Solute Rejection 2019 , 1, 440-446		38
137	Improved synthesis of Eketoenamine-linked covalent organic frameworks via monomer exchange reactions. <i>Chemical Communications</i> , 2019 , 55, 2680-2683	5.8	55
136	Photoinduced, reversible phase transitions in all-inorganic perovskite nanocrystals. <i>Nature Communications</i> , 2019 , 10, 504	17.4	67

135	Mechanistic Study of Stress Relaxation in Urethane-Containing Polymer Networks. <i>Journal of Physical Chemistry B</i> , 2019 , 123, 1432-1441	3.4	59
134	ECyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 8089-8096	9.5	35
133	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12049-12053	16.4	63
132	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie</i> , 2019 , 131, 1217	7721218	31 ²²
131	Defect-Triggered Phase Transition in Cesium Lead Halide Perovskite Nanocrystals 2019 , 1, 185-191		37
130	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. <i>Materials Horizons</i> , 2019 , 6, 1868-187	6 ^{14.4}	41
129	Buckling of Two-Dimensional Covalent Organic Frameworks under Thermal Stress. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 9883-9887	3.9	21
128	Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by ECyclodextrin Polymers. <i>Macromolecules</i> , 2019 , 52, 3747-3752	5.5	38
127	A Dinuclear Mechanism Implicated in Controlled Carbene Polymerization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6473-6478	16.4	18
126	QSARs to predict adsorption affinity of organic micropollutants for activated carbon and Exyclodextrin polymer adsorbents. <i>Water Research</i> , 2019 , 154, 217-226	12.5	32
125	Pathway Complexity in the Stacking of Imine-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2019 , 31, 7104-7111	9.6	9
124	Cooperative Self-Assembly of Pyridine-2,6-Diimine-Linked Macrocycles into Mechanically Robust Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14708-14714	16.4	15
123	Resorcinarene Cavitand Polymers for the Remediation of Halomethanes and 1,4-Dioxane. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13315-13319	16.4	32
122	Reprocessing Cross-Linked Polyurethanes by Catalyzing Carbamate Exchange. <i>Macromolecules</i> , 2019 , 52, 6330-6335	5.5	46
121	Chemical Control over Nucleation and Anisotropic Growth of Two-Dimensional Covalent Organic Frameworks. <i>ACS Central Science</i> , 2019 , 5, 1892-1899	16.8	26
120	Cooperative Self-Assembly of Pyridine-2,6-Diimine-Linked Macrocycles into Mechanically Robust Nanotubes. <i>Angewandte Chemie</i> , 2019 , 131, 14850-14856	3.6	3
119	Electronic Structure of Two-Dimensional Econjugated Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2019 , 31, 3051-3065	9.6	60
118	Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. <i>Chemical Science</i> , 2019 , 10, 3796-3801	9.4	68

117	Emissive Single-Crystalline Boroxine-Linked Colloidal Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19728-19735	16.4	37
116	Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 688-695	11	75
115	Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework. <i>Advanced Materials</i> , 2019 , 31, e1805941	24	35
114	Tetrafluoroterephthalonitrile-crosslinked Etyclodextrin polymers for efficient extraction and recovery of organic micropollutants from water. <i>Journal of Chromatography A</i> , 2018 , 1541, 52-56	4.5	28
113	Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks. <i>Advanced Theory and Simulations</i> , 2018 , 1, 1700015	3.5	31
112	Equilibration of Imine-Linked Polymers to Hexagonal Macrocycles Driven by Self-Assembly. <i>Chemistry - A European Journal</i> , 2018 , 24, 3989-3993	4.8	20
111	Lewis-Acid-Catalyzed Interfacial Polymerization of Covalent Organic Framework Films. <i>CheM</i> , 2018 , 4, 308-317	16.2	227
110	Measuring and Manipulating the Adhesion of Graphene. <i>Nano Letters</i> , 2018 , 18, 449-454	11.5	20
109	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. <i>ACS Nano</i> , 2018 , 12, 385-391	16.7	41
108	Reprocessable Acid-Degradable Polycarbonate Vitrimers. <i>Macromolecules</i> , 2018 , 51, 389-397	5.5	172
108	Reprocessable Acid-Degradable Polycarbonate Vitrimers. <i>Macromolecules</i> , 2018 , 51, 389-397 Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-5		172 310
107	Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-50. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. <i>ACS Sustainable</i>	573.3	310
107	Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-55. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11145-11159. High aspect ratio nanotubes assembled from macrocyclic iminium salts. <i>Proceedings of the National</i>	8.3	310
107 106 105	Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-55. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11145-11159. High aspect ratio nanotubes assembled from macrocyclic iminium salts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8883-8888. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption.	8.3 11.5	310 196 21
107106105104	Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-55. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11145-11159. High aspect ratio nanotubes assembled from macrocyclic iminium salts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8883-8888. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. <i>Chemical Science</i> , 2018 , 9, 8883-8889. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized	8.3 11.5	310 196 21
107106105104103	Seeded growth of single-crystal two-dimensional covalent organic frameworks. <i>Science</i> , 2018 , 361, 52-54. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11145-11159. High aspect ratio nanotubes assembled from macrocyclic iminium salts. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8883-8888. Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. <i>Chemical Science</i> , 2018 , 9, 8883-8889. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12677-12681. Rapidly Reprocessable Cross-Linked Polyhydroxyurethanes Based on Disulfide Exchange. <i>ACS</i>	573.3 8.3 11.5 9.4	310 196 21 39

99	Structural effects on the reprocessability and stress relaxation of crosslinked polyhydroxyurethanes. <i>Journal of Applied Polymer Science</i> , 2017 , 134, 44984	2.9	69
98	Electrochemical Hydrogen Evolution at Ordered Mo7Ni7. ACS Catalysis, 2017, 7, 3375-3383	13.1	44
97	Covalent Organic Frameworks as a Platform for Multidimensional Polymerization. <i>ACS Central Science</i> , 2017 , 3, 533-543	16.8	194
96	Rapid access to substituted 2-naphthyne intermediates the benzannulation of halogenated silylalkynes. <i>Chemical Science</i> , 2017 , 8, 5675-5681	9.4	16
95	Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane. <i>Macromolecules</i> , 2017 , 50, 4425-4434	5.5	48
94	Benchmarking Micropollutant Removal by Activated Carbon and Porous Ecyclodextrin Polymers under Environmentally Relevant Scenarios. <i>Environmental Science & Environmental Sci</i>	98 ^{0.3}	82
93	ECyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7689-7692	16.4	184
92	Beyond Media Composition: Cell Plasma Membrane Disruptions by Graphene Oxide. <i>CheM</i> , 2017 , 2, 324	-385	2
91	Rapid, Low Temperature Formation of Imine-Linked Covalent Organic Frameworks Catalyzed by Metal Triflates. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4999-5002	16.4	187
90	Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. Journal of the American Chemical Society, 2017 , 139, 16310-16318	16.4	83
89	Synthesis of 2D Imine-Linked Covalent Organic Frameworks through Formal Transimination Reactions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12911-12914	16.4	135
88	Development and Performance Characterization of a Polyimine Covalent Organic Framework Thin-Film Composite Nanofiltration Membrane. <i>Environmental Science & Environmental Sci</i>	52-143	15 ¹²⁻⁵
87	Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures. <i>Accounts of Chemical Research</i> , 2017 , 50, 2776-2788	24.3	80
86	Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. <i>ACS Central Science</i> , 2016 , 2, 667-673	16.8	274
85	Hybrid Supercapacitors from Framework Materials. <i>CheM</i> , 2016 , 1, 21-23	16.2	1
84	Cotton Fabric Functionalized with a Ecyclodextrin Polymer Captures Organic Pollutants from Contaminated Air and Water. <i>Chemistry of Materials</i> , 2016 , 28, 8340-8346	9.6	90
83	Moving Beyond Boron: The Emergence of New Linkage Chemistries in Covalent Organic Frameworks. <i>Macromolecules</i> , 2016 , 49, 5297-5305	5.5	92
82	Discrete, Hexagonal Boronate Ester-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. <i>Chemistry of Materials</i> , 2016 , 28, 4884-4888	9.6	20

81	Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. <i>Chemical Communications</i> , 2016 , 52, 3690-3	5.8	240
80	Rapid removal of organic micropollutants from water by a porous Etyclodextrin polymer. <i>Nature</i> , 2016 , 529, 190-4	50.4	1038
79	Sequence-defined oligo(-arylene) foldamers derived from the benzannulation of (arylene ethynylene)s. <i>Chemical Science</i> , 2016 , 7, 6357-6364	9.4	31
78	Ambipolar Transport in Solution-Synthesized Graphene Nanoribbons. <i>ACS Nano</i> , 2016 , 10, 4847-56	16.7	45
77	Graphene Oxide Nanosheets Stimulate Ruffling and Shedding of Mammalian Cell Plasma Membranes. <i>CheM</i> , 2016 , 1, 273-286	16.2	22
76	Two-dimensional Covalent Organic Framework Thin Films Grown in Flow. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11433-6	16.4	81
75	Tetraarylborate polymer networks as single-ion conducting solid electrolytes. <i>Chemical Science</i> , 2015 , 6, 5499-5505	9.4	93
74	Growth rates and water stability of 2D boronate ester covalent organic frameworks. <i>Chemical Communications</i> , 2015 , 51, 7532-5	5.8	103
73	Real-Time, Ultrasensitive Detection of RDX Vapors Using Conjugated Network Polymer Thin Films. <i>Chemistry of Materials</i> , 2015 , 27, 3813-3816	9.6	22
72	Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14019-22	16.4	417
71	Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. <i>Angewandte Chemie</i> , 2015 , 127, 13423-13427	3.6	8
70	Regioselective Synthesis of Polyheterohalogenated Naphthalenes via the Benzannulation of Haloalkynes. <i>Chemistry - A European Journal</i> , 2015 , 21, 18122-7	4.8	34
69	Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 13225-9	16.4	68
68	University learning: Improve undergraduate science education. <i>Nature</i> , 2015 , 523, 282-4	50.4	91
67	Retaining the Activity of Enzymes and Fluorophores Attached to Graphene Oxide. <i>Chemistry of Materials</i> , 2015 , 27, 4499-4504	9.6	13
66	Patterned growth of oriented 2D covalent organic framework thin films on single-layer graphene. Journal of Polymer Science Part A, 2015 , 53, 378-384	2.5	61
65	Rapid and efficient redox processes within 2D covalent organic framework thin films. <i>ACS Nano</i> , 2015 , 9, 3178-83	16.7	247
64	Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8783-9	16.4	178

63	Regioselective Asao-Yamamoto benzannulations of diaryl acetylenes. Organic Letters, 2014, 16, 5926-9	6.2	19
62	Rapid synthesis of crowded aromatic architectures from silyl acetylenes. <i>Organic Letters</i> , 2014 , 16, 4416	5- 9 .2	34
61	Laser-induced sub-millisecond heating reveals distinct tertiary ester cleavage reaction pathways in a photolithographic resist polymer. <i>ACS Nano</i> , 2014 , 8, 5746-56	16.7	22
60	Functionalization of 3D covalent organic frameworks using monofunctional boronic acids. <i>Polymer</i> , 2014 , 55, 330-334	3.9	36
59	Accessing extended and partially fused hexabenzocoronenes using a benzannulation gyclodehydrogenation approach. <i>Chemical Science</i> , 2013 , 4, 3973	9.4	67
58	Noncovalent Functionalization of Graphene by Molecular and Polymeric Adsorbates. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2649-2657	6.4	84
57	Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angewandte Chemie - International Edition, 2013, 52, 3177-80	16.4	35
56	Improving the binding characteristics of tripodal compounds on single layer graphene. <i>ACS Nano</i> , 2013 , 7, 7193-9	16.7	31
55	Preservation of Antibody Selectivity on Graphene by Conjugation to a Tripod Monolayer. <i>Angewandte Chemie</i> , 2013 , 125, 3259-3262	3.6	10
54	EKetoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. Journal of the American Chemical Society, 2013, 135, 16821-4	16.4	682
53	Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. <i>Journal of the American Chemical Society</i> , 2013 , 135, 14952-5	16.4	352
52	Mixed linker strategies for organic framework functionalization. <i>Chemistry - A European Journal</i> , 2013 , 19, 818-27	4.8	90
51	Postsynthetic functionalization of 3D covalent organic frameworks. <i>Chemical Communications</i> , 2013 , 49, 2457-9	5.8	95
50	A ferrocene-functionalized [2]rotaxane with two fluorophores as stoppers. <i>Journal of Organic Chemistry</i> , 2013 , 78, 2091-8	4.2	53
49	Conjugated Porous Polymers For TNT Vapor Detection ACS Macro Letters, 2013, 2, 423-426	6.6	135
48	Direct detection of RDX vapor using a conjugated polymer network. <i>Journal of the American Chemical Society</i> , 2013 , 135, 8357-62	16.4	117
47	Rationally synthesized two-dimensional polymers. <i>Nature Chemistry</i> , 2013 , 5, 453-65	17.6	775
46	Control of the graphene-protein interface is required to preserve adsorbed protein function. <i>Analytical Chemistry</i> , 2013 , 85, 2754-9	7.8	94

45	Internal functionalization of three-dimensional covalent organic frameworks. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1885-9	16.4	168
44	Highly Efficient Benzannulation of Poly(phenylene ethynylene)s. <i>Angewandte Chemie</i> , 2012 , 124, 12217	-1 & 220	21
43	Highly efficient benzannulation of poly(phenylene ethynylene)s. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 12051-4	16.4	50
42	Quantification of the surface diffusion of tripodal binding motifs on graphene using scanning electrochemical microscopy. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6224-36	16.4	55
41	A classification scheme for the stacking of two-dimensional boronate ester-linked covalent organic frameworks. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17460		55
40	PROFILE: Early Excellence in Physical Organic Chemistry. <i>Journal of Physical Organic Chemistry</i> , 2012 , 25, 529-529	2.1	
39	Single-layer MoS2 phototransistors. <i>ACS Nano</i> , 2012 , 6, 74-80	16.7	2704
38	Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2623-7	16.4	224
37	High hopes: can molecular electronics realise its potential?. Chemical Society Reviews, 2012, 41, 4827-59	58.5	258
36	Lattice Expansion of Highly Oriented 2D Phthalocyanine Covalent Organic Framework Films. <i>Angewandte Chemie</i> , 2012 , 124, 2677-2681	3.6	54
35	Internal Functionalization of Three-Dimensional Covalent Organic Frameworks. <i>Angewandte Chemie</i> , 2012 , 124, 1921-1925	3.6	40
34	Thermodynamic analysis on energy densities of batteries. <i>Energy and Environmental Science</i> , 2011 , 4, 2614	35.4	634
33	Multivalent binding motifs for the noncovalent functionalization of graphene. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17614-7	16.4	133
32	A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. <i>Journal of the American Chemical Society</i> , 2011 , 133, 19416-21	16.4	254
31	A mechanistic study of Lewis acid-catalyzed covalent organic framework formation. <i>Chemical Science</i> , 2011 , 2, 1588-1593	9.4	116
30	A solid-state switch containing an electrochemically switchable bistable poly[n]rotaxane. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1487-1495		43
29	Oriented 2D covalent organic framework thin films on single-layer graphene. <i>Science</i> , 2011 , 332, 228-31	33.3	824
28	Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. <i>Nature Chemistry</i> , 2010 , 2, 672-7	17.6	540

(2007-2009)

27	Alternate State Variables for Emerging Nanoelectronic Devices. <i>IEEE Nanotechnology Magazine</i> , 2009 , 8, 66-75	2.6	32
26	Complexation between methyl viologen (paraquat) bis(hexafluorophosphate) and dibenzo[24]crown-8 revisited. <i>Chemistry - A European Journal</i> , 2009 , 15, 106-16	4.8	61
25	Facile postpolymerization end-modification of RAFT polymers. <i>Journal of Polymer Science Part A</i> , 2009 , 47, 346-356	2.5	84
24	Free energy barrier for molecular motions in bistable [2]rotaxane molecular electronic devices. Journal of Physical Chemistry A, 2009 , 113, 2136-43	2.8	38
23	Enzyme-responsive snap-top covered silica nanocontainers. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2382-3	16.4	544
22	Folding of a donor-acceptor polyrotaxane by using noncovalent bonding interactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 6514-9	11.5	76
21	Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds. <i>Accounts of Chemical Research</i> , 2008 , 41, 1750-61	24.3	141
20	A one-pot synthesis of constitutionally unsymmetrical rotaxanes using sequential Cu(I)-catalyzed azide-alkyne cycloadditions. <i>Chemistry - A European Journal</i> , 2008 , 14, 4168-77	4.8	56
19	Heterogeneous catalysis through microcontact printing. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 9927-32	16.4	47
18	A redox-switchable alpha-cyclodextrin-based [2]rotaxane. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11294-6	16.4	120
17	A clicked bistable [2]rotaxane. <i>Organic Letters</i> , 2007 , 9, 1287-90	6.2	90
16	Structural and co-conformational effects of alkyne-derived subunits in charged donor-acceptor [2]catenanes. <i>Journal of the American Chemical Society</i> , 2007 , 129, 8236-46	16.4	76
15	A liquid-crystalline bistable [2]rotaxane. Angewandte Chemie - International Edition, 2007, 46, 4675-9	16.4	158
14	Rotaxanes and Catenanes by Click Chemistry. <i>QSAR and Combinatorial Science</i> , 2007 , 26, 1165-1174		67
13	Modular synthesis and dynamics of a variety of donor-acceptor interlocked compounds prepared by click chemistry. <i>Chemistry - an Asian Journal</i> , 2007 , 2, 634-47	4.5	93
12	Designing bistable [2]rotaxanes for molecular electronic devices. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2007 , 365, 1607-25	3	76
11	Clicked Interlocked Molecules. Bulletin of the Chemical Society of Japan, 2007, 80, 1856-1869	5.1	114
10	Molecular Machines. <i>The Electrical Engineering Handbook</i> , 2007 , 11-1-11-48		

9	Light-Harvesting Chromophores with Metalated Porphyrin Cores for Tuned Photosensitization of Singlet Oxygen via Two-Photon Excited FRET. <i>Chemistry of Materials</i> , 2006 , 18, 3682-3692	9.6	102
8	Cyclobis(paraquat-p-phenylene)-based [2]catenanes prepared by kinetically controlled reactions involving alkynes. <i>Organic Letters</i> , 2006 , 8, 4835-8	6.2	83
7	Efficient templated synthesis of donor-acceptor rotaxanes using click chemistry. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10388-90	16.4	171
6	Amphiphilic diblock star polymer catalysts via atom transfer radical polymerization. <i>Journal of Polymer Science Part A</i> , 2006 , 44, 4939-4951	2.5	45
5	Functionally layered dendrimers: a new building block and its application to the synthesis of multichromophoric light-harvesting systems. <i>Organic Letters</i> , 2005 , 7, 4451-4	6.2	104
4	Photosensitization of Singlet Oxygen via Two-Photon-Excited Fluorescence Resonance Energy Transfer in a Water-Soluble Dendrimer. <i>Chemistry of Materials</i> , 2005 , 17, 2267-2275	9.6	168
3	Singlet oxygen generation via two-photon excited FRET. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5380-1	16.4	208
2	Blending Polyurethane Thermosets Using Dynamic Urethane Exchange. <i>Macromolecules</i> ,	5.5	6
1	Nucleation-Elongation Dynamics of Two-Dimensional Covalent Organic Frameworks		2