
Steve W Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413644/publications.pdf Version: 2024-02-01

STEVE W/ CIII

#	Article	IF	CITATIONS
1	Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends in Food Science and Technology, 2007, 18, 4-19.	7.8	808
2	Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry, 2006, 95, 466-473.	4.2	677
3	Slowly Digestible Starch—A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1642-1657.	5.4	205
4	A review on the isolation and structure of tea polysaccharides and their bioactivities. Food Hydrocolloids, 2011, 25, 144-149.	5.6	202
5	Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy () pectin. Carbohydrate Polymers, 2004, 58, 391-400.	5.1	195
6	Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice. Nature Medicine, 2006, 12, 1081-1087.	15.2	191
7	Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chemistry, 2007, 105, 1599-1605.	4.2	182
8	Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chemistry, 2014, 151, 154-160.	4.2	165
9	Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloids, 2012, 28, 275-283.	5.6	164
10	Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydrate Polymers, 2006, 63, 408-416.	5.1	158
11	Studies on the granular structure of resistant starches (type 4) from normal, high amylose and waxy corn starch citrates. Food Research International, 2006, 39, 332-341.	2.9	151
12	Some physicochemical properties of sage (Salvia macrosiphon) seedÂgum. Food Hydrocolloids, 2014, 35, 453-462.	5.6	150
13	Fractionation and physicochemical characterization of psyllium gum. Carbohydrate Polymers, 2008, 73, 35-43.	5.1	147
14	A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 131-147.	1.5	135
15	Heat induced gelling properties of soy protein isolates prepared from different defatted soybean flours. Food Research International, 2005, 38, 377-385.	2.9	129
16	A soy protein-polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocolloids, 2015, 48, 155-164.	5.6	127
17	New studies on gum ghatti (Anogeissus latifolia) part I. Fractionation, chemical and physical characterization of the gum. Food Hydrocolloids, 2011, 25, 1984-1990.	5.6	122
18	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part II. Fine structures of O-acetylated residues. Carbohydrate Polymers, 2015, 117, 422-433.	5.1	114

#	Article	IF	CITATIONS
19	Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydrate Polymers, 2011, 84, 894-899.	5.1	112
20	Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 2005, 19, 793-801.	5.6	110
21	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part I. Extraction, purification, and partial structural characterization. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 74-83.	1.5	108
22	Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 2009, 23, 1542-1547.	5.6	107
23	Cell wall polysaccharides in cereals: chemical structures and functional properties. Structural Chemistry, 2009, 20, 291-297.	1.0	105
24	Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocolloids, 2019, 94, 48-56.	5.6	105
25	A further amendment to the classical core structure of gum arabic (Acacia senegal). Food Hydrocolloids, 2013, 31, 42-48.	5.6	103
26	Characterisation and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPERGUMâ,,¢): Part 4. Spectroscopic characterisation of Acacia senegal var. senegal and Acacia (sen) SUPERGUMâ,,¢ arabic. Food Hydrocolloids, 2007, 21, 347-352.	5.6	102
27	Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Critical Reviews in Food Science and Nutrition, 2019, 59, 2863-2878.	5.4	102
28	Physicochemical characterization of a high molecular weight bioactive β-d-glucan from the fruiting bodies of Ganoderma lucidum. Carbohydrate Polymers, 2014, 101, 968-974.	5.1	100
29	Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L Carbohydrate Polymers, 2012, 87, 2416-2424.	5.1	97
30	In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: effects of pig diets and emulsification in hydrocolloids. Journal of Applied Microbiology, 2006, 101, 1282-1291.	1.4	93
31	A new isolation method of β-d-glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocolloids, 2008, 22, 239-247.	5.6	93
32	Covalent attachment of fenugreek gum to soy whey protein isolate through natural Maillard reaction for improved emulsion stability. Food Hydrocolloids, 2013, 30, 552-558.	5.6	92
33	Effect of concentration, ionic strength and freeze-drying on the heat-induced aggregation of soy proteins. Food Chemistry, 2007, 104, 1410-1417.	4.2	91
34	Effects of oat β-glucan on endurance exercise and its anti-fatigue properties in trained rats. Carbohydrate Polymers, 2013, 92, 1159-1165.	5.1	88
35	Emulsifying properties of soy whey protein isolate–fenugreek gum conjugates in oil-in-water emulsion model system. Food Hydrocolloids, 2013, 30, 691-697.	5.6	84
36	Characterization of the Surface-Active Components of Sugar Beet Pectin and the Hydrodynamic Thickness of the Adsorbed Pectin Layer. Journal of Agricultural and Food Chemistry, 2008, 56, 8111-8120.	2.4	82

#	Article	IF	CITATIONS
37	Structural characterization and immunostimulatory activity of a glucan from natural Cordyceps sinensis. Food Hydrocolloids, 2017, 67, 139-147.	5.6	82
38	Characterisation of a novel water-soluble polysaccharide from Leuconostoc citreum SK24.002. Food Hydrocolloids, 2014, 36, 265-272.	5.6	81
39	Chemical and rheological properties of polysaccharides from fruit body of Auricularia auricular-judae. Food Hydrocolloids, 2016, 57, 30-37.	5.6	80
40	Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 831-836.	5.1	79
41	Non-starch polysaccharides from American ginseng: physicochemical investigation and structural characterization. Food Hydrocolloids, 2015, 44, 320-327.	5.6	78
42	Triple-helix polysaccharides: Formation mechanisms and analytical methods. Carbohydrate Polymers, 2021, 262, 117962.	5.1	78
43	Fractionation and physicochemical characterization of peach gum polysaccharides. Food Hydrocolloids, 2011, 25, 1285-1290.	5.6	77
44	Structural characterization of a low-molecular-weight heteropolysaccharide (glucomannan) isolated from Artemisia sphaerocephala Krasch. Carbohydrate Research, 2012, 350, 31-39.	1.1	73
45	Elimination of aggregates of (1→3) (1→4)-β-D-glucan in dilute solutions for light scattering and size exclusion chromatography study. Food Hydrocolloids, 2006, 20, 361-368.	5.6	72
46	Studies of aggregation behaviours of cereal Î ² -glucans in dilute aqueous solutions by light scattering: Part I. Structure effects. Food Hydrocolloids, 2011, 25, 189-195.	5.6	72
47	Characterisations of oil-in-water Pickering emulsion stabilized hydrophobic phytoglycogen nanoparticles. Food Hydrocolloids, 2018, 76, 78-87.	5.6	72
48	New studies on gum ghatti (Anogeissus latifolia) part II. Structure characterization of an arabinogalactan from the gum by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1991-1998.	5.6	71
49	A comparison of chemical composition, bioactive components and antioxidant activity of natural and cultured Cordyceps sinensis. LWT - Food Science and Technology, 2015, 63, 2-7.	2.5	71
50	Protective effect of three glucomannans from different plants against DSS induced colitis in female BALB/c mice. Food and Function, 2019, 10, 1928-1939.	2.1	71
51	Isolation and characterization of wheat bran starch. Food Research International, 2008, 41, 882-887.	2.9	70
52	Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora) Tj ETQqO 0 0 rgl	3T /Overlov 4.2	ck 10 Tf 50 1

53	Purification and partial physicochemical characteristics of protein free fenugreek gums. Food Hydrocolloids, 2009, 23, 2049-2053.	5.6	68
54	Fenugreek fibre in bread: Effects on dough development and bread quality. LWT - Food Science and Technology, 2016, 71, 274-280.	2.5	68

#	Article	IF	CITATIONS
55	Investigation of the interaction between sage seed gum and guar gum: Steady and dynamic shear rheology. Food Hydrocolloids, 2016, 60, 67-76.	5.6	67
56	Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydrate Polymers, 2011, 85, 615-621.	5.1	66
57	In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs. Food Hydrocolloids, 2011, 25, 180-188.	5.6	65
58	Sulfated modification, characterization and property of a water-insoluble polysaccharide from Ganoderma atrum. International Journal of Biological Macromolecules, 2015, 79, 248-255.	3.6	65
59	Dual-enzymatic modification of maize starch for increasing slow digestion property. Food Hydrocolloids, 2014, 38, 180-185.	5.6	64
60	Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed. International Journal of Biological Macromolecules, 2016, 83, 142-151.	3.6	64
61	New studies on gum ghatti (Anogeissus latifolia) Part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocolloids, 2011, 25, 1999-2007.	5.6	63
62	Bioactive polysaccharides from Cordyceps sinensis: Isolation, structure features and bioactivities. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 38-52.	1.5	63
63	Nutrients, phytochemicals and antioxidant activities of 26 kidney bean cultivars. Food and Chemical Toxicology, 2017, 108, 467-477.	1.8	63
64	Interaction of wheat and rice starches with yellow mustard mucilage. Food Hydrocolloids, 2003, 17, 863-869.	5.6	62
65	Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydrate Research, 2012, 362, 47-55.	1.1	62
66	Effects of yellow mustard mucilage on functional and rheological properties of buckwheat and pea starches. Food Chemistry, 2006, 95, 83-93.	4.2	61
67	Fractionation, partial characterization and bioactivity of water-soluble polysaccharides and polysaccharide–protein complexes from Pleurotus geesteranus. International Journal of Biological Macromolecules, 2011, 48, 5-12.	3.6	61
68	Protection of heat-sensitive probiotic bacteria during spray-drying byÂsodium caseinate stabilized fat particles. Food Hydrocolloids, 2015, 51, 459-467.	5.6	60
69	Preparation, partial characterization and bioactivity of water-soluble polysaccharides from boat-fruited sterculia seeds. Carbohydrate Polymers, 2007, 70, 437-443.	5.1	59
70	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part VI. Protective effects against oxidative stress in immunosuppressed mice. Food Research International, 2015, 72, 168-173.	2.9	59
71	Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocolloids, 2015, 50, 37-43.	5.6	59
72	Structural investigation of a neutral extracellular glucan from Lactobacillus reuteri SK24.003. Carbohydrate Polymers, 2014, 106, 384-392.	5.1	58

#	Article	IF	CITATIONS
73	Evaluation of extrusion-modified fenugreek gum. Food Hydrocolloids, 2011, 25, 1296-1301.	5.6	55
74	Methylation and 2D NMR analysis of arabinoxylan from the seeds of Plantago asiatica L. Carbohydrate Polymers, 2012, 88, 1395-1401.	5.1	55
75	The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic). Food Hydrocolloids, 2013, 32, 221-227.	5.6	54
76	Polysaccharide from Seeds of Plantago asiatica L. Affects Lipid Metabolism and Colon Microbiota of Mouse. Journal of Agricultural and Food Chemistry, 2014, 62, 229-234.	2.4	53
77	Emulsifying and structural properties of pectin enzymatically extracted from pumpkin. LWT - Food Science and Technology, 2014, 58, 396-403.	2.5	53
78	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan): Part IV. Immunomodulatory activity in vivo. Journal of Functional Foods, 2015, 15, 525-532.	1.6	53
79	Characterization of a bioactive polysaccharide from Ganoderma atrum: Re-elucidation of the fine structure. Carbohydrate Polymers, 2017, 158, 58-67.	5.1	52
80	Solution and Conformational Properties of Wheat \hat{I}^2 -d-Glucans Studied by Light Scattering and Viscometry. Biomacromolecules, 2006, 7, 446-452.	2.6	51
81	Stability of citral in oil-in-water emulsions protected by a soy protein–polysaccharide Maillard reaction product. Food Research International, 2015, 69, 357-363.	2.9	51
82	Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage. Food Hydrocolloids, 2016, 54, 328-337.	5.6	50
83	Structure and physicochemical properties for modified starch-based nanoparticle from different maize varieties. Food Hydrocolloids, 2017, 67, 37-44.	5.6	50
84	Improved survival of Lactobacillus zeae LB1 in a spray dried alginate-protein matrix. Food Hydrocolloids, 2018, 78, 100-108.	5.6	50
85	Effects of oat bran, processed to different molecular weights of β-glucan, on plasma lipids and caecal formation of SCFA in mice. British Journal of Nutrition, 2010, 104, 364-373.	1.2	49
86	Physicochemical properties of a water soluble extracellular homopolysaccharide from Lactobacillus reuteri SK24.003. Carbohydrate Polymers, 2015, 131, 377-383.	5.1	49
87	Coating white shrimp (Litopenaeus vannamei) with edible fully deacetylated chitosan incorporated with clove essential oil and kojic acid improves preservation during cold storage. International Journal of Biological Macromolecules, 2020, 162, 1276-1282.	3.6	49
88	Effect of ionic strength on the heat-induced soy protein aggregation and the phase separation of soy protein aggregate/dextran mixtures. Food Hydrocolloids, 2009, 23, 1015-1023.	5.6	48
89	Mechanism of Interactions between Calcium and Viscous Polysaccharide from the Seeds of Plantago asiatica L Journal of Agricultural and Food Chemistry, 2012, 60, 7981-7987.	2.4	48
90	Structure and digestibility of endosperm water-soluble α-glucans from different sugary maize mutants. Food Chemistry, 2014, 143, 156-162.	4.2	48

#	Article	IF	CITATIONS
91	Triple helix conformation of β-d-glucan from Ganoderma lucidum and effect of molecular weight on its immunostimulatory activity. International Journal of Biological Macromolecules, 2018, 114, 1064-1070.	3.6	48
92	Conformational properties of a bioactive polysaccharide from Ganoderma atrum by light scattering and molecular modeling. Food Hydrocolloids, 2018, 84, 16-25.	5.6	48
93	Pectic polysaccharides from hawthorn: Physicochemical and partial structural characterization. Food Hydrocolloids, 2019, 90, 146-153.	5.6	47
94	The influence of fenugreek gum and extrusion modified fenugreek gum on bread. Food Hydrocolloids, 2012, 26, 350-358.	5.6	46
95	Effect of calcium on solution and conformational characteristics of polysaccharide from seeds of Plantago asiatica L. Carbohydrate Polymers, 2015, 124, 331-336.	5.1	46
96	Development and properties of new kojic acid and chitosan composite biodegradable films for active packaging materials. International Journal of Biological Macromolecules, 2020, 144, 483-490.	3.6	46
97	Insights into the structure-bioactivity relationships of marine sulfated polysaccharides: A review. Food Hydrocolloids, 2022, 123, 107049.	5.6	46
98	Structure characteristics and rheological properties of acidic polysaccharide from boat-fruited sterculia seeds. Carbohydrate Polymers, 2012, 88, 926-930.	5.1	45
99	Elucidation of structural difference in theaflavins for modulation of starch digestion. Journal of Functional Foods, 2013, 5, 2024-2029.	1.6	45
100	Phytonutrients for controlling starch digestion: Evaluation of grape skin extract. Food Chemistry, 2014, 145, 205-211.	4.2	45
101	Development of maize starch with a slow digestion property using maltogenic α-amylase. Carbohydrate Polymers, 2014, 103, 164-169.	5.1	45
102	Dietary flaxseed intake exacerbates acute colonic mucosal injury and inflammation induced by dextran sodium sulfate. American Journal of Physiology - Renal Physiology, 2014, 306, G1042-G1055.	1.6	45
103	Conformational properties of high molecular weight heteropolysaccharide isolated from seeds of Artemisia sphaerocephala Krasch. Food Hydrocolloids, 2013, 32, 155-161.	5.6	44
104	Structure elucidation of catechins for modulation of starch digestion. LWT - Food Science and Technology, 2014, 57, 188-193.	2.5	44
105	Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chemistry, 2018, 254, 266-271.	4.2	44
106	Structural features of pectic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydrate Polymers, 2010, 80, 544-550.	5.1	43
107	Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. Food Research International, 2014, 56, 166-173.	2.9	43
108	Impact of dual-enzyme treatment on the octenylsuccinic anhydride esterification of soluble starch nanoparticle. Carbohydrate Polymers, 2016, 147, 392-400.	5.1	43

#	Article	IF	CITATIONS
109	Synergisms between yellow mustard mucilage and galactomannans and applications in food products — A mini review. Advances in Colloid and Interface Science, 2006, 128-130, 249-256.	7.0	42
110	Structure characterization of exopolysaccharides from Lactobacillus casei LC2W from skim milk. Food Hydrocolloids, 2016, 56, 134-143.	5.6	42
111	Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis. Food Science and Biotechnology, 2017, 26, 55-62.	1.2	42
112	Influence of genotype on chemical composition and rheological properties of flaxseed gums. Food Hydrocolloids, 1996, 10, 221-227.	5.6	41
113	The polysaccharides from fermented Ganoderma lucidum mycelia induced miRNAs regulation in suppressed HepG2 cells. Carbohydrate Polymers, 2014, 103, 319-324.	5.1	41
114	Study on <i>Dendrobium officinale O</i> -Acetyl-glucomannan (Dendronan). 7. Improving Effects on Colonic Health of Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 2485-2491.	2.4	40
115	Physicochemical properties and regulatory effects on db/db diabetic mice of β-glucans extracted from oat, wheat and barley. Food Hydrocolloids, 2014, 37, 60-68.	5.6	39
116	Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food and Function, 2017, 8, 2142-2154.	2.1	39
117	Gelling property of soy protein–gum mixtures. Food Hydrocolloids, 2003, 17, 889-894.	5.6	38
118	Structure and functional properties of starches from Chinese ginkgo (Ginkgo biloba L.) nuts. Food Research International, 2012, 49, 303-310.	2.9	38
119	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part III–Immunomodulatory activity in vitro. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 99-105.	1.5	38
120	<i>Ganoderma atrum</i> Polysaccharide Ameliorates Hyperglycemia-Induced Endothelial Cell Death via a Mitochondria-ROS Pathway. Journal of Agricultural and Food Chemistry, 2015, 63, 8182-8191.	2.4	38
121	Analysis of β-glucan molar mass from barley malt and brewer's spent grain with asymmetric flow field-flow fractionation (AF4) and their association to proteins. Carbohydrate Polymers, 2017, 157, 541-549.	5.1	38
122	Structure characterization of high molecular weight heteropolysaccharide isolated from Artemisia sphaerocephala Krasch seed. Carbohydrate Polymers, 2011, 86, 742-746.	5.1	37
123	The range of dietary fibre ingredients and a comparison of their technical functionality. , 2013, , 96-119.		37
124	In vitro evaluation of the antioxidant activities of carbohydrates. Bioactive Carbohydrates and Dietary Fibre, 2016, 7, 19-27.	1.5	36
125	A novel emulsifier prepared from Acacia seyal polysaccharide through Maillard reaction with casein peptides. Food Hydrocolloids, 2017, 69, 236-241.	5.6	35
126	Understanding the structure–emulsification relationship of gum ghatti – A review of recent advances. Food Hydrocolloids, 2014, 42, 187-195.	5.6	34

#	Article	IF	CITATIONS
127	Arabinan-rich rhamnogalacturonan-I from flaxseed kernel cell wall. Food Hydrocolloids, 2015, 47, 158-167.	5.6	34

128 Solution Properties of Conventional Gum Arabic and a Matured Gum Arabic (<i>Acacia</i> (sen) SUPER) Tj ETQq0 Q.0 rgBT /Qyerlock 10

129	Milk concentration of the mammalian lignan enterolactone, milk production, milk fatty acid profile, and digestibility in dairy cows fed diets containing whole flaxseed or flaxseed meal. Journal of Dairy Research, 2009, 76, 257-264.	0.7	33
130	Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch. Food Chemistry, 2021, 335, 127556.	4.2	33
131	Comparison of quercetin and rutin inhibitory influence on Tartary buckwheat starch digestion in vitro and their differences in binding sites with the digestive enzyme. Food Chemistry, 2022, 367, 130762.	4.2	33
132	Structural analysis of a pectic polysaccharide from boat-fruited sterculia seeds. International Journal of Biological Macromolecules, 2013, 56, 76-82.	3.6	32
133	Chemical, Molecular, and Structural Characterization of Alkali Extractable Nonstarch Polysaccharides from Job's Tears. Journal of Agricultural and Food Chemistry, 2008, 56, 8549-8557.	2.4	31
134	Antioxidant effects of Artemis sphaerocephala Krasch. gum, on streptozotocin-induced type 2 diabetic rats. Food Hydrocolloids, 2011, 25, 207-213.	5.6	30
135	Rheological properties of β-d-glucan from the fruiting bodies of Ganoderma lucidum. Food Hydrocolloids, 2016, 58, 120-125.	5.6	30
136	Gelation mechanism of polysaccharides from Auricularia auricula-judae. Food Hydrocolloids, 2018, 76, 35-41.	5.6	30
137	Effects of pentosanase and glucose oxidase on the composition, rheology and microstructure of whole wheat dough. Food Hydrocolloids, 2018, 84, 545-551.	5.6	30
138	Plant-derived glucomannans: Sources, preparation methods, structural features, and biological properties. Trends in Food Science and Technology, 2020, 99, 101-116.	7.8	30
139	Structure and biological activities of a pectic polysaccharide from Mosla chinensis Maxim. cv. Jiangxiangru. Carbohydrate Polymers, 2014, 105, 276-284.	5.1	29
140	Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocolloids, 2021, 112, 106289.	5.6	29
141	A polysaccharide from natural <i>Cordyceps sinensis</i> regulates the intestinal immunity and gut microbiota in mice with cyclophosphamide-induced intestinal injury. Food and Function, 2021, 12, 6271-6282.	2.1	29
142	Polysaccharides modification through green technology: Role of ultrasonication towards improving physicochemical properties of (1-3)(1-6)-î±-d-glucans. Food Hydrocolloids, 2015, 50, 166-173.	5.6	28
143	Antimicrobial and antioxidant films formed by bacterial cellulose, chitosan and tea polyphenol – Shelf life extension of grass carp. Food Packaging and Shelf Life, 2022, 33, 100866.	3.3	28
144	Modulation of cytokine gene expression by selected <i>Lactobacillus</i> isolates in the ileum, caecal tonsils and spleen of <i>Salmonella</i> -challenged broilers. Avian Pathology, 2015, 44, 463-469.	0.8	27

#	Article	IF	CITATIONS
145	Water-soluble yellow mustard mucilage: A novel ingredient with potent antioxidant properties. International Journal of Biological Macromolecules, 2016, 91, 710-715.	3.6	27
146	Rheological behavior of dietary fibre in simulated small intestinal conditions. Food Hydrocolloids, 2018, 76, 216-225.	5.6	27
147	Extraction, partial characterization and bioactivity of polysaccharides from boat-fruited sterculia seeds. International Journal of Biological Macromolecules, 2012, 51, 815-818.	3.6	26
148	Xyloglucans from flaxseed kernel cell wall: Structural and conformational characterisation. Carbohydrate Polymers, 2016, 151, 538-545.	5.1	26
149	Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloids, 2003, 17, 429-437.	5.6	25
150	Extraction of β lucan from Oat Bran in Laboratory Scale. Cereal Chemistry, 2009, 86, 601-608.	1.1	25
151	Maillard reaction of oat β-glucan and the rheological property of its amino acid/peptide conjugates. Food Hydrocolloids, 2018, 76, 30-34.	5.6	25
152	Structural characterization of an α-1, 6-linked galactomannan from natural Cordyceps sinensis. Food Hydrocolloids, 2018, 78, 77-91.	5.6	25
153	Structural characterization and conformational properties of a polysaccharide isolated from Dendrobium nobile Lindl Food Hydrocolloids, 2020, 98, 104904.	5.6	25
154	Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta. Food Chemistry, 2021, 338, 127825.	4.2	25
155	Improved the slow digestion property of maize starch using partially Î ² -amylolysis. Food Chemistry, 2014, 152, 128-132.	4.2	24
156	Naringenin prolongs lifespan and delays aging mediated by IIS and MAPK in <i>Caenorhabditis elegans</i> . Food and Function, 2021, 12, 12127-12141.	2.1	23
157	Phase behavior and microstructure of preheated soy proteins and κ-carrageenan mixtures. Food Hydrocolloids, 2008, 22, 845-853.	5.6	22
158	Leuconostoc citreum SK24.002 glucansucrase: Biochemical characterisation and de novo synthesis of α-glucan. International Journal of Biological Macromolecules, 2016, 91, 123-131.	3.6	22
159	Short-chain fatty acid profiles from flaxseed dietary fibres after in vitro fermentation of pig colonic digesta: Structure–function relationship. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 62-68.	1.5	21
160	Identification of pivotal components on the antioxidant activity of polysaccharide extract from Ganoderma atrum. Bioactive Carbohydrates and Dietary Fibre, 2016, 7, 9-18.	1.5	21
161	Characterisations of Lactobacillus reuteri SK24.003 glucansucrase: Implications for α-gluco-poly- and oligosaccharides biosynthesis. Food Chemistry, 2017, 222, 105-112.	4.2	21
162	Active pectin fragments of high in vitro antiproliferation activities toward human colon adenocarcinoma cells: Rhamnogalacturonan II. Food Hydrocolloids, 2018, 83, 239-245.	5.6	21

#	Article	IF	CITATIONS
163	Structural Characterization and Chain Conformation of Water-Soluble Î ² -Glucan from Wild <i>Cordyceps sinensis</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 12520-12527.	2.4	21
164	Studies on O-acetyl-glucomannans from Amorphophallus species: Comparison of fine structure. Food Hydrocolloids, 2020, 100, 105391.	5.6	21
165	Structural Analysis of Polysaccharides. , 2005, , .		20
166	Steady and dynamic shear rheological properties of extrusion modified fenugreek gum solutions. Food Science and Biotechnology, 2011, 20, 1663-1668.	1.2	20
167	Study of the mechanism of formation of hyaluronan putty at pH 2.5: Part I. Experimental measurements. Carbohydrate Polymers, 2013, 98, 1677-1682.	5.1	20
168	Structural elucidation and in vitro fermentation of extracellular α-d-glucan from Lactobacillus reuteri SK24.003. Bioactive Carbohydrates and Dietary Fibre, 2015, 6, 109-116.	1.5	20
169	Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): Part V. Fractionation and structural heterogeneity of different fractions. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 106-115.	1.5	20
170	Seed coat mucilages: Structural, functional/bioactive properties, and genetic information. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2534-2559.	5.9	20
171	Novel nano-particulated exopolysaccharide produced by Klebsiella sp. PHRC1.001. Carbohydrate Polymers, 2017, 171, 252-258.	5.1	20
172	Dietary Fiber. , 2009, , 399-448.		19
173	Structural investigation of a glycoprotein from gum ghatti. Carbohydrate Polymers, 2012, 89, 749-758.	5.1	19
174	Elucidating molecular structure and prebiotics properties of bioengineered α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocolloids, 2016, 54, 227-233.	5.6	19
175	Purple Sweet Potato Extract extends lifespan by activating autophagy pathway in male Drosophila melanogaster. Experimental Gerontology, 2021, 144, 111190.	1.2	19
176	Impact of dietary fibre on in vitro digestibility of modified tapioca starch: viscosity effect. Bioactive Carbohydrates and Dietary Fibre, 2018, 15, 2-11.	1.5	18
177	Effect of molecular weight of dextran on the phase behavior and microstructure of preheated soy protein/dextran mixtures. Carbohydrate Polymers, 2008, 72, 160-168.	5.1	17
178	Cordyceps sinensis: InÂvitro anti-fibrotic bioactivity of natural andÂcultured preparations. Food Hydrocolloids, 2014, 35, 444-452.	5.6	17
179	Different thermal treatments of highland barley kernel affect its flour physicochemical properties by structural modification of starch and protein. Food Chemistry, 2022, 387, 132835.	4.2	17
180	New studies on gum ghatti (Anogeissus latifolia) part 5: TheÂconformational properties of gum ghatti. Food Hydrocolloids, 2015, 43, 25-30.	5.6	16

#	Article	IF	CITATIONS
181	The protective effects against cyclophosphamide (CTX)-induced immunosuppression of three glucomannans. Food Hydrocolloids, 2020, 100, 105445.	5.6	16
182	Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioactive Carbohydrates and Dietary Fibre, 2022, 27, 100301.	1.5	16
183	Spray-drying microencapsulation of citral with soy protein-soy polysaccharide Maillard reaction products: stability and release characteristics. Food Hydrocolloids, 2022, 132, 107842.	5.6	15
184	Functional Properties of Dietary Fiber. , 2011, , 517-525.		14
185	Cordyceps sinensis : Anti-fibrotic and inflammatory effects of a cultured polysaccharide extract. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 2-8.	1.5	14
186	Study of conformational properties of cereal β-glucans by computer modeling. Food Hydrocolloids, 2012, 26, 377-382.	5.6	13
187	Calibration of pre-equilibrium HF-LPME and its application to the rapid determination of free analytes in biological fluids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 980, 28-33.	1.2	13
188	Comparative study on glucomannans with different structural characteristics: Functional properties and intestinal production of short chain fatty acids. International Journal of Biological Macromolecules, 2020, 164, 826-835.	3.6	13
189	Comparison of synergistic interactions of yellow mustard gum with locust bean gum or κ-carrageenan. Food Hydrocolloids, 2022, 132, 107804.	5.6	13
190	Inhibitor or promoter? The performance of polysaccharides from Ganoderma lucidum on human tumor cells with different p53 statuses. Food and Function, 2016, 7, 1872-1875.	2.1	12
191	Structure–prebiotic properties relationship for α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocolloids, 2016, 57, 246-252.	5.6	12
192	Structural characterisation of galacto-oligosaccharides (VITAGOSâ,,¢) sythesized by transgalactosylation of lactose. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 33-38.	1.5	12
193	Stability and bioaccessibility improvement of capsorubin using bovine serum albumin-dextran-gallic acid and sodium alginate. International Journal of Biological Macromolecules, 2021, 182, 1362-1370.	3.6	12
194	Fourier Transform Infrared Spectroscopy (FTIR) for Carbohydrate Analysis. Springer Briefs in Molecular Science, 2018, , 69-71.	0.1	12
195	Grafted ferulic acid dose-dependently enhanced the apparent viscosity and antioxidant activities of arabinoxylan. Food Hydrocolloids, 2022, 128, 107557.	5.6	12
196	Fermentation models of dietary fibre in vitro and in vivo - A review. Food Hydrocolloids, 2022, 131, 107685.	5.6	12
197	Study of the mechanism of formation of hyaluronan putty at pH 2.5: Part Il—Theoretical analysis. Carbohydrate Polymers, 2013, 98, 1683-1688.	5.1	11
198	Physicochemical evaluation of fenugreek gum and extrusion modified fenugreek gum and effects on starch degradation in bread. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 176-183.	1.5	11

#	Article	IF	CITATIONS
199	Structure features of the intracellular polysaccharide from Ganoderma lucidum and the irrelative immune-anticancer activities of GLPs. Bioactive Carbohydrates and Dietary Fibre, 2016, 8, 43-50.	1.5	11
200	Biofabrication, structure and characterization of an amylopectin-based cyclic glucan. Food and Function, 2020, 11, 2543-2554.	2.1	10
201	Glucomannan from <i>Aloe vera</i> Gel Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration via the Wnt/β-Catenin Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 10581-10591.	2.4	10
202	Understanding Carbohydrate Analysis. , 2005, , .		9
203	Functional characteristics of starches from the root of Cynanchum auriculatum Royle ex Wight grown in China. Carbohydrate Polymers, 2012, 88, 568-575.	5.1	9
204	Effects of pig colonic digesta and dietary fibres on in vitro microbial fermentation profiles. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 120-130.	1.5	9
205	Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells. Journal of Functional Foods, 2020, 74, 104136.	1.6	9
206	Purple sweet potato anthocyanin extract regulates redox state related to gut microbiota homeostasis in obese mice. Journal of Food Science, 2022, 87, 2133-2146.	1.5	9
207	Impact of pectin with various esterification degrees on the profiles of gut microbiota and serum metabolites. Applied Microbiology and Biotechnology, 2022, , .	1.7	8
208	New studies on gum ghatti (Anogeissuslatifolia) part 6: Physicochemical characteristics of the protein moiety of gum ghatti. Food Hydrocolloids, 2015, 44, 237-243.	5.6	7
209	Purple sweet potato extract maintains intestinal homeostasis and extend lifespan through increasing autophagy in female <i>Drosophila melanogaster</i> . Journal of Food Biochemistry, 2021, 45, e13861.	1.2	7
210	A molecular modeling approach to understand the structure and conformation relationship of (Glc p) Tj ETQq0 0	0 <u>rg</u> BT /O	verlock 10 Tf
211	Antioxidant hydrocolloids from herb Graptopetalum paraguayense leaves show anti-colon cancer cells and anti-neuroinflammatory potentials. Food Hydrocolloids, 2017, 73, 51-59.	5.6	6
212	Methodology for Structural Analysis of Polysaccharides. Springer Briefs in Molecular Science, 2018, ,	0.1	6
213	Effect of milled flaxseed and storage conditions on sensory properties and selected bioactive compounds in banana and cinnamon muffins used in a clinical trial. Journal of the Science of Food and Agriculture, 2019, 99, 831-843.	1.7	6
214	Beta-Glucans and Their Derivatives. , 2018, , 99-141.		5
215	Carbanilation of cereal β-glucans for molecular weight determination and conformational studies. Carbohydrate Research, 2007, 342, 1434-1441.	1.1	4
216	Fractions from natural Cordyceps sinensis alleviated intestinal injury in cyclophosphamide-induced	1.5	4

ı cyclophospl 216 mice. Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100271.

#	Article	IF	CITATIONS
217	Understanding the Physical Properties of Food Polysaccharides. , 2005, , .		4
218	Glucomannans From Dendrobium officinale and Aloe. , 2018, , 295-347.		3
219	Structure, Classification and Modification of Polysaccharides. , 2021, , 204-219.		3
220	Polysaccharides From Dendrobium Officinal, Cordyceps Sinensis and Ganoderma: Structures and Bioactivities. Special Publication - Royal Society of Chemistry, 2014, , 303-318.	0.0	3
221	<i>β</i> -Glucans. RSC Polymer Chemistry Series, 2011, , 319-345.	0.1	2
222	Cordyceps Polysaccharides. , 2018, , 143-204.		2
223	Psyllium Polysaccharide. , 2018, , 395-443.		2
224	1D & 2D and Solid-State NMR. Springer Briefs in Molecular Science, 2018, , 53-63.	0.1	2
225	Pectin Bioactivity. , 2020, , 165-188.		2
226	Other emerging gums: Flaxseed gum, yellow mustard gum, and psyllium gums. , 2021, , 597-624.		2
227	Loadings of lycopene in emulsion and sodium alginate–Kâ€carrageenan composite systems: Preparation, characterization, bioaccessibility, and kinetics. Journal of Food Science, 2022, 87, 2463-2473.	1.5	2
228	Conformational Properties of Flaxseed Rhamnogalacturonan-I and Correlation between Primary Structure and Conformation. Polymers, 2022, 14, 2667.	2.0	2
229	Detection and Determination of Polysaccharides in Foods. , 2006, , 675-712.		1
230	Cereal Beta-Glucan. , 2018, , 445-482.		1
231	Strategies for Structural Characterization of Polysaccharides. Springer Briefs in Molecular Science, 2018, , 1-7.	0.1	1
232	Polysaccharide Extraction and Fractionation. Springer Briefs in Molecular Science, 2018, , 9-17.	0.1	1
233	Reuteransucrase-catalytic kinetic modeling and functional characteristics for novel prebiotic gluco-oligomers. Food and Function, 2020, 11, 7037-7047.	2.1	1
234	Understanding the Conformation of Polysaccharides. , 2005, , .		1

Understanding the Conformation of Polysaccharides. , 2005, , . 234

#	Article	IF	CITATIONS
235	Structural Characterization and <i>In Vitro</i> Fermentation Profiles of Flaxseed Kernel Dietary Fibres. Special Publication - Royal Society of Chemistry, 2016, , 235-244.	0.0	1
236	Editorial: Sixth International Hydrocolloids Conference. Food Hydrocolloids, 2003, 17, 397.	5.6	0
237	6th International Hydrocolloids Conference. Trends in Food Science and Technology, 2004, 15, 290.	7.8	0
238	This special issue is dedicated to The 50th anniversary of Jiangnan University (November 16, 2008) and The 1st anniversary of the China–Canada Science Innovation Centre on Food. Food Research International, 2008, 41, 849.	2.9	0
239	Methodologies for Studying Bioactive Polysaccharides. , 2018, , 51-97.		0
240	Other Herbal Polysaccharides. , 2018, , 483-526.		0
241	Editorial: On the Occasion of 90 th Birthday of Professor Glyn O. Phillips. Bioactive Carbohydrates and Dietary Fibre, 2018, 14, 1.	1.5	0
242	MALDI-TOF-MS for Polysaccharides Analysis. Springer Briefs in Molecular Science, 2018, , 65-68.	0.1	0
243	Molecular Weight Distribution and Conformational Properties of Polysaccharides. Springer Briefs in Molecular Science, 2018, , 19-27.	0.1	0
244	Monosaccharide Composition Analysis. Springer Briefs in Molecular Science, 2018, , 29-36.	0.1	0
245	Linkage Pattern Analysis. Springer Briefs in Molecular Science, 2018, , 45-51.	0.1	0
246	Editorial: On the occasion of 90th birthday of Professor Glyn O. Phillips. Food Hydrocolloids, 2018, 78, 1.	5.6	0
247	Dendronan. , 2021, , 579-596.		0
248	Application of two dimensional (2D) NMR spectroscopy in the structural analysis of selected polysaccharides. Special Publication - Royal Society of Chemistry, 2007, , 27-38.	0.0	0
249	Study on Dendrobium Officinale O-Acetyl-Glucomannan (Dendronan): Part VII. The Immunomodulatory and Antioxidant Activity. Special Publication - Royal Society of Chemistry, 2016, , 218-226.	0.0	0
250	Partial Acid Hydrolysis and Molecular Degradation. Springer Briefs in Molecular Science, 2018, , 37-43.	0.1	0
251	Detailed Experimental Procedures. Springer Briefs in Molecular Science, 2018, , 73-79.	0.1	0

Flaxseed Kernel Dietary Fibre: Partial Structure and Physicochemical Characterisation., 0,, 90-99.

0