Francesca Montarolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135607/publications.pdf

Version: 2024-02-01

471509 610901 36 681 17 24 citations h-index g-index papers 43 43 43 1346 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Selective Agonist for Sphingosine-1-Phosphate Receptors Siponimod Increases the Expression Level of NR4A Genes in Microglia Cell Line. Current Issues in Molecular Biology, 2022, 44, 1247-1256.	2.4	4
2	<scp>NURR1</scp> â€deficient mice have age―and sexâ€specific behavioral phenotypes. Journal of Neuroscience Research, 2022, 100, 1747-1754.	2.9	6
3	Overexpression of the ubiquitinâ€editing enzyme A20 in the brain lesions of Multiple Sclerosis patients: moving from systemic to central nervous system inflammation. Brain Pathology, 2021, 31, 283-296.	4.1	9
4	A First Phenotypic and Functional Characterization of Placental Extracellular Vesicles from Women with Multiple Sclerosis. International Journal of Molecular Sciences, 2021, 22, 2875.	4.1	3
5	Elovl5 Expression in the Central Nervous System of the Adult Mouse. Frontiers in Neuroanatomy, 2021, 15, 669073.	1.7	6
6	Exposure to fine particulate matter (PM2.5) hampers myelin repair in a mouse model of white matter demyelination. Neurochemistry International, 2021, 145, 104991.	3.8	9
7	Elovl5 is required for proper action potential conduction along peripheral myelinated fibers. Glia, 2021, 69, 2419-2428.	4.9	8
8	HGF and MET: From Brain Development to Neurological Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 683609.	3.7	47
9	Analysis of the Gadolinium retention in the Experimental Autoimmune Encephalomyelitis (EAE) murine model of Multiple Sclerosis. Journal of Trace Elements in Medicine and Biology, 2021, 68, 126831.	3.0	2
10	Engineering, Characterization, and Biological Evaluation of an Antibody Targeting the HGF Receptor. Frontiers in Immunology, 2021, 12, 775151.	4.8	2
11	In vivo silencing of miRâ€125aâ€3p promotes myelin repair in models of white matter demyelination. Glia, 2020, 68, 2001-2014.	4.9	29
12	TNFAIP3 Deficiency Affects Monocytes, Monocytes-Derived Cells and Microglia in Mice. International Journal of Molecular Sciences, 2020, 21, 2830.	4.1	4
13	The transcription factor Nurr1 is up-regulated in amyotrophic lateral sclerosis patients and SOD1-G93A mice. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	8
14	NURR1 deficiency is associated to ADHD-like phenotypes in mice. Translational Psychiatry, 2019, 9, 207.	4.8	28
15	Immunomodulatory Effect of Pregnancy on Leukocyte Populations in Patients With Multiple Sclerosis: A Comparison of Peripheral Blood and Decidual Placental Tissue. Frontiers in Immunology, 2019, 10, 1935.	4.8	16
16	NURR1 Impairment in Multiple Sclerosis. International Journal of Molecular Sciences, 2019, 20, 4858.	4.1	15
17	Emerging roles of Fgf14 in behavioral control. Behavioural Brain Research, 2019, 356, 257-265.	2.2	17
18	Study of the NR 4A family gene expression in patients with multiple sclerosis treated with Fingolimod. European Journal of Neurology, 2019, 26, 667-672.	3.3	8

#	Article	IF	Citations
19	Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiology of Disease, 2019, 124, 14-28.	4.4	23
20	The Footprints of Poly-Autoimmunity: Evidence for Common Biological Factors Involved in Multiple Sclerosis and Hashimoto's Thyroiditis. Frontiers in Immunology, 2018, 9, 311.	4.8	21
21	A20 in Multiple Sclerosis and Parkinson's Disease: Clue to a Common Dysregulation of Anti-Inflammatory Pathways?. Neurotoxicity Research, 2017, 32, 1-7.	2.7	23
22	Biological activity of glatiramer acetate on Treg and anti-inflammatory monocytes persists for more than 10 years in responder multiple sclerosis patients. Clinical Immunology, 2017, 181, 83-88.	3.2	20
23	Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA)â€"from morphology to molecular testing. Journal of Thoracic Disease, 2017, 9, S395-S404.	1.4	30
24	The impact of malignant nipple discharge cytology (NDc) in surgical management of breast cancer patients. PLoS ONE, 2017, 12, e0182073.	2.5	5
25	Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse. Scientific Reports, 2016, 6, 30725.	3.3	19
26	Altered NR4A Subfamily Gene Expression Level in Peripheral Blood of Parkinson's and Alzheimer's Disease Patients. Neurotoxicity Research, 2016, 30, 338-344.	2.7	51
27	A gene expression study denies the ability of 25 candidate biomarkers to predict the interferon-beta treatment response in multiple sclerosis patients. Journal of Neuroimmunology, 2016, 292, 34-39.	2.3	23
28	Anti-inflammatory genes associated with multiple sclerosis: A gene expression study. Journal of Neuroimmunology, 2015, 279, 75-78.	2.3	14
29	Nurr1 reduction influences the onset of chronic EAE in mice. Inflammation Research, 2015, 64, 841-844.	4.0	26
30	Effects of Isoxazolo-Pyridinone 7e, a Potent Activator of the Nurr1 Signaling Pathway, on Experimental Autoimmune Encephalomyelitis in Mice. PLoS ONE, 2014, 9, e108791.	2.5	36
31	Motor dysfunction and cerebellar Purkinje cell firing impairment in Ebf2 null mice. Molecular and Cellular Neurosciences, 2013, 52, 51-61.	2.2	15
32	A <i>de novo</i> X;8 translocation creates a <i>PTK2</i> - <i>THOC2</i> gene fusion with <i>THOC2</i> expression knockdown in a patient with psychomotor retardation and congenital cerebellar hypoplasia. Journal of Medical Genetics, 2013, 50, 543-551.	3.2	42
33	Early Enriched Environment Exposure Protects Spatial Memory and Accelerates Amyloid Plaque Formation in APPSwe/PS1L166P Mice. PLoS ONE, 2013, 8, e69381.	2.5	25
34	Brain Expression of Kv3 Subunits During Development, Adulthood and Aging and in a Murine Model of Alzheimer's Disease. Journal of Molecular Neuroscience, 2012, 46, 606-615.	2.3	33
35	Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice. PLoS ONE, 2012, 7, e34726.	2.5	36
36	Morphological and biomolecular characterization of the neonatal olfactory bulb ensheathing cell line. Journal of Neuroscience Methods, 2009, 185, 89-98.	2.5	17