
Ju-Mei Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135604/publications.pdf Version: 2024-02-01

III-MELZENC

#	Article	IF	CITATIONS
1	Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence. Antimicrobial Agents and Chemotherapy, 2016, 60, 126-135.	3.2	117
2	Global Proteinâ^'Protein Interaction Network in the Human Pathogen <i>Mycobacterium tuberculosis</i> H37Rv. Journal of Proteome Research, 2010, 9, 6665-6677.	3.7	104
3	The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiology, 2010, 10, 242.	3.3	79
4	Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in <scp><i>S</i></scp> <i>treptococcus mutans</i> . Environmental Microbiology, 2016, 18, 904-922.	3.8	72
5	Multisystem Analysis of <i>Mycobacterium tuberculosis</i> Reveals Kinase-Dependent Remodeling of the Pathogen-Environment Interface. MBio, 2018, 9, .	4.1	57
6	Phosphate is the third nutrient monitored by TOR in <i>Candida albicans</i> and provides a target for fungal-specific indirect TOR inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6346-6351.	7.1	53
7	Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Applied Microbiology and Biotechnology, 2016, 100, 857-867.	3.6	48
8	Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Archives of Oral Biology, 2019, 99, 190-197.	1.8	46
9	A Proteome-Scale Identification of Novel Antigenic Proteins in <i>Mycobacterium tuberculosis</i> toward Diagnostic and Vaccine Development. Journal of Proteome Research, 2010, 9, 4812-4822.	3.7	43
10	Genome editing in <i>Streptococcus mutans</i> through selfâ€ŧargeting CRISPR arrays. Molecular Oral Microbiology, 2018, 33, 440-449.	2.7	39
11	A GntR Family Transcription Factor in Streptococcus mutans Regulates Biofilm Formation and Expression of Multiple Sugar Transporter Genes. Frontiers in Microbiology, 2019, 9, 3224.	3.5	33
12	Protein kinases PknA and PknB independently and coordinately regulate essential Mycobacterium tuberculosis physiologies and antimicrobial susceptibility. PLoS Pathogens, 2020, 16, e1008452.	4.7	33
13	Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Scientific Reports, 2019, 9, 5949.	3.3	28
14	Inhibition of Enterococcus faecalis Growth and Biofilm Formation by Molecule Targeting Cyclic di-AMP Synthetase Activity. Journal of Endodontics, 2018, 44, 1381-1388.e2.	3.1	26
15	Over-producing soluble protein complex and validating protein–protein interaction through a new bacterial co-expression system. Protein Expression and Purification, 2010, 69, 47-53.	1.3	24
16	CRISPR as systems in oral microbiome: From immune defense to physiological regulation. Molecular Oral Microbiology, 2020, 35, 41-48.	2.7	24
17	Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nature Communications, 2019, 10, 3035.	12.8	22
18	Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Archives of Oral Biology, 2020, 116, 104762.	1.8	22

Ju-Mei Zeng

#	Article	IF	CITATIONS
19	EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Molecular Oral Microbiology, 2019, 34, 194-208.	2.7	20
20	A Genome-Wide Regulator–DNA Interaction Network in the Human Pathogen Mycobacterium tuberculosis H37Rv. Journal of Proteome Research, 2012, 11, 4682-4692.	3.7	19
21	Quantitative acetylome analysis reveals involvement of glucosyltransferase acetylation in <i>Streptococcus mutans</i> biofilm formation. Environmental Microbiology Reports, 2021, 13, 86-97.	2.4	18
22	Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Archives of Oral Biology, 2021, 125, 105107.	1.8	18
23	<i>Mycobacterium tuberculosis</i> VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress response. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
24	Characterization of a functional C-terminus of the Mycobacterium tuberculosis MtrA responsible for both DNA binding and interaction with its two-component partner protein, MtrB. Journal of Biochemistry, 2010, 148, 549-556.	1.7	16
25	Interaction between rpsL and gyrA mutations affects the fitness and dual resistance of Mycobacterium tuberculosis clinical isolates against streptomycin and fluoroquinolones. Infection and Drug Resistance, 2018, Volume 11, 431-440.	2.7	16
26	Global analysis of lysine succinylome in the periodontal pathogen <i>Porphyromonas gingivalis</i> . Molecular Oral Microbiology, 2019, 34, 74-83.	2.7	16
27	Comprehensive profiling of protein lysine acetylation and its overlap with lysine succinylation in the <i>Porphyromonas gingivalis</i> fimbriated strain ATCC 33277. Molecular Oral Microbiology, 2020, 35, 240-250.	2.7	13
28	Inhibitory effects of sodium new houttuyfonate on growth and biofilm formation of Streptococcus mutans. Microbial Pathogenesis, 2021, 157, 104957.	2.9	9
29	Activity of <i>Ligustrum robustum</i> (Roxb.) Blume extract against the biofilm formation and exopolysaccharide synthesis of <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2021, 36, 67-79.	2.7	7
30	Shared bicycle microbial community: a potential antibiotic-resistant bacteria warehouse. Folia Microbiologica, 2021, 66, 49-58.	2.3	6
31	A novel high-throughput B1H-ChIP method for efficiently validating and screening specific regulator–target promoter interactions. Applied Microbiology and Biotechnology, 2012, 93, 1257-1269.	3.6	5
32	Heterologous Boosting With Listeria-Based Recombinant Strains in BCG-Primed Mice Improved Protection Against Pulmonary Mycobacterial Infection. Frontiers in Immunology, 2020, 11, 2036.	4.8	5
33	Deletion of the <i>yqeK</i> gene leads to the accumulation of Ap4A and reduced biofilm formation in <i>Streptococcus mutans</i> . Molecular Oral Microbiology, 2022, 37, 9-21.	2.7	3
34	Solution scattering study of the Bacillus subtilis PgdS enzyme involved in poly-γ-glutamic acids degradation. PLoS ONE, 2018, 13, e0195355.	2.5	2
35	A New Bacterial Co-expression System for Over-expressing Soluble Protein and Validating Protein–Protein Interaction. Methods in Molecular Biology, 2012, 824, 235-249.	0.9	2
36	Regulation of Cell Division in Streptococci: Comparing with the Model Rods. Current Issues in Molecular Biology, 2019, 32, 259-326.	2.4	0