David A B Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135540/publications.pdf

Version: 2024-02-01

429 papers

32,728 citations

87 h-index 175 g-index

432 all docs 432 docs citations

432 times ranked 14055 citing authors

#	Article	IF	CITATIONS
1	Electric field dependence of optical absorption near the band gap of quantum-well structures. Physical Review B, 1985, 32, 1043-1060.	3.2	1,837
2	Device Requirements for Optical Interconnects to Silicon Chips. Proceedings of the IEEE, 2009, 97, 1166-1185.	21.3	1,642
3	Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Physical Review Letters, 1984, 53, 2173-2176.	7.8	1,558
4	Linear and nonlinear optical properties of semiconductor quantum wells. Advances in Physics, 1989, 38, 89-188.	14.4	1,064
5	Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Physical Review B, 1987, 35, 8113-8125.	3.2	1,003
6	Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88, 728-749.	21.3	965
7	Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Physical Review B, 1985, 32, 6601-6609.	3.2	770
8	Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 2005, 437, 1334-1336.	27.8	725
9	Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures. IEEE Journal of Quantum Electronics, 1984, 20, 265-275.	1.9	710
10	Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber. Optics Letters, 1992, 17, 505.	3.3	624
11	Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photonics, 2008, 2, 226-229.	31.4	606
12	Programmable photonic circuits. Nature, 2020, 586, 207-216.	27.8	598
13	Novel hybrid optically bistable switch: The quantum well selfâ€electroâ€optic effect device. Applied Physics Letters, 1984, 45, 13-15.	3.3	538
14	Optical investigation of Bloch oscillations in a semiconductor superlattice. Physical Review B, 1992, 46, 7252-7255.	3.2	521
15	The quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation. IEEE Journal of Quantum Electronics, 1985, 21, 1462-1476.	1.9	520
16	Attojoule Optoelectronics for Low-Energy Information Processing and Communications. Journal of Lightwave Technology, 2017, 35, 346-396.	4.6	464
17	Are optical transistors the logical next step?. Nature Photonics, 2010, 4, 3-5.	31.4	436
18	Coherent submillimeter-wave emission from charge oscillations in a double-well potential. Physical Review Letters, 1992, 68, 2216-2219.	7.8	421

#	Article	IF	Citations
19	Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588, 39-47.	27.8	418
20	Large roomâ€ŧemperature optical nonlinearity in GaAs/Ga1â^'x AlxAs multiple quantum well structures. Applied Physics Letters, 1982, 41, 679-681.	3.3	396
21	Highâ€speed optical modulation with GaAs/GaAlAs quantum wells in apâ€iâ€ndiode structure. Applied Physics Letters, 1984, 44, 16-18.	3.3	389
22	Femtosecond Excitation of Nonthermal Carrier Populations in GaAs Quantum Wells. Physical Review Letters, 1986, 56, 1191-1193.	7.8	387
23	Self-configuring universal linear optical component [Invited]. Photonics Research, 2013, 1, 1.	7.0	331
24	Femtosecond Dynamics of Resonantly Excited Excitons in Room-Temperature GaAs Quantum Wells. Physical Review Letters, 1985, 54, 1306-1309.	7.8	300
25	Optical interconnects to silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 1312-1317.	2.9	298
26	Quantum well carrier sweep out: relation to electroabsorption and exciton saturation. IEEE Journal of Quantum Electronics, 1991, 27, 2281-2295.	1.9	297
27	Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect. Physical Review B, 1986, 33, 6976-6982.	3.2	296
28	Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules. IEEE Journal of Quantum Electronics, 1986, 22, 1816-1830.	1.9	290
29	Band-Gapâ€"Resonant Nonlinear Refraction in III-V Semiconductors. Physical Review Letters, 1981, 47, 197-200.	7.8	270
30	GaAs MQW modulators integrated with silicon CMOS. IEEE Photonics Technology Letters, 1995, 7, 360-362.	2.5	239
31	Perfect optics with imperfect components. Optica, 2015, 2, 747.	9.3	234
32	Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. Optics Letters, 1989, 14, 146.	3.3	229
33	On perfect cloaking. Optics Express, 2006, 14, 12457.	3.4	229
34	Symmetric self-electrooptic effect device: optical set-reset latch, differential logic gate, and differential modulator/detector. IEEE Journal of Quantum Electronics, 1989, 25, 1928-1936.	1.9	228
35	Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture. Journal of Parallel and Distributed Computing, 1997, 41, 42-52.	4.1	226
36	Free carrier and many-body effects in absorption spectra of modulation-doped quantum wells. IEEE Journal of Quantum Electronics, 1988, 24, 1677-1689.	1.9	218

#	Article	IF	CITATIONS
37	Effect of low-power nonlinear refraction on laser-beam propagation in InSb. Optics Letters, 1979, 4, 331.	3.3	203
38	A micromachining-based technology for enhancing germanium light emission via tensile strain. Nature Photonics, 2012, 6, 398-405.	31.4	190
39	Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2, 55-76.	2.9	189
40	Dynamic non-linear optical processes in semiconductors. Advances in Physics, 1981, 30, 697-800.	14.4	188
41	Optical modulator on silicon employing germanium quantum wells. Optics Express, 2007, 15, 5851.	3.4	187
42	Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20, A293.	3.4	182
43	Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Applied Optics, 2000, 39, 1681.	2.1	180
44	Optical interconnects to electronic chips. Applied Optics, 2010, 49, F59.	2.1	179
45	Direct measurement of resonant and nonresonant tunneling times in asymmetric coupled quantum wells. Physical Review B, 1989, 40, 3028-3031.	3.2	177
46	Quadratic electroâ€optic effect due to the quantumâ€confined Stark effect in quantum wells. Applied Physics Letters, 1987, 50, 842-844.	3.3	175
47	Refractive Fabry-Perot bistability with linear absorption: Theory of operation and cavity optimization. IEEE Journal of Quantum Electronics, 1981, 17, 306-311.	1.9	170
48	Electromagnetic degrees of freedom of an optical system. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 892.	1.5	169
49	Roomâ€ŧemperature excitons in 1.6â€Î¼m bandâ€gap GalnAs/AllnAs quantum wells. Applied Physics Letters, 198 46, 619-621.	3.3	167
50	Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low- and high-intensity limits. Physical Review Letters, 1989, 62, 1189-1192.	7.8	162
51	Electroabsorption of highly confined systems: Theory of the quantumâ€confined Franz–Keldysh effect in semiconductor quantum wires and dots. Applied Physics Letters, 1988, 52, 2154-2156.	3.3	161
52	Multiple quantum well reflection modulator. Applied Physics Letters, 1987, 50, 1119-1121.	3.3	158
53	QUANTUM WELL OPTOELECTRONIC SWITCHING DEVICES. International Journal of High Speed Electronics and Systems, 1990, 01, 19-46.	0.7	156
54	Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Optics Express, 2012, 20, 28388.	3.4	156

#	Article	IF	Citations
55	Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides. Applied Physics Letters, 1987, 50, 1098-1100.	3.3	150
56	Quantum-Confined Stark Effect in Ge/SiGe Quantum Wells on Si for Optical Modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1503-1513.	2.9	150
57	Self-aligning universal beam coupler. Optics Express, 2013, 21, 6360.	3.4	149
58	Unscrambling lightâ€"automatically undoing strong mixing between modes. Light: Science and Applications, 2017, 6, e17110-e17110.	16.6	149
59	Highly anisotropic optical properties of single quantum well waveguides. Applied Physics Letters, 1985, 47, 664-667.	3.3	148
60	Electroabsorption by Stark effect on roomâ€temperature excitons in GaAs/GaAlAs multiple quantum well structures. Applied Physics Letters, 1983, 42, 864-866.	3.3	147
61	131 ps optical modulation in semiconductor multiple quantum wells (MQW's). IEEE Journal of Quantum Electronics, 1985, 21, 117-118.	1.9	146
62	Exciton Green's-function approach to optical absorption in a quantum well with an applied electric field. Physical Review B, 1991, 43, 1500-1509.	3.2	144
63	Quantumâ€confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy. Applied Physics Letters, 1987, 50, 1010-1012.	3.3	140
64	Symmetric selfâ€electroâ€optic effect device: Optical setâ€reset latch. Applied Physics Letters, 1988, 52, 1419-1421.	3.3	140
65	Strong polarizationâ€sensitive electroabsorption in GaAs/AlGaAs quantum well waveguides. Applied Physics Letters, 1985, 47, 1148-1150.	3.3	136
66	Multiple-Wavelength Focusing of Surface Plasmons with a Nonperiodic Nanoslit Coupler. Nano Letters, 2011, 11, 2693-2698.	9.1	133
67	Modal analysis and coupling in metal-insulator-metal waveguides. Physical Review B, 2009, 79, .	3.2	124
68	Observation of roomâ€temperature blue shift and bistability in a strained InGaAsâ€GaAs ã€^111〉 selfâ€electroâ€optic effect device. Applied Physics Letters, 1990, 56, 715-717.	3.3	123
69	Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels. IEEE Journal of Quantum Electronics, 1993, 29, 655-669.	1.9	120
70	Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1462-1472.	2.9	119
71	Strained germanium thin film membrane on silicon substrate for optoelectronics. Optics Express, 2011, 19, 25866.	3.4	114
72	Roomâ€ŧemperature electroabsorption and switching in a GaAs/AlGaAs superlattice. Applied Physics Letters, 1989, 55, 340-342.	3.3	112

#	Article	IF	CITATIONS
73	Non-linear optical effects in InSb with a c.w. CO laser. Optics Communications, 1978, 27, 133-136.	2.1	111
74	Excitonic effects in coupled quantum wells. Physical Review B, 1991, 44, 6231-6242.	3.2	107
75	Degenerate fourâ€wave mixing in roomâ€ŧemperature GaAs/GaAlAs multiple quantum well structures. Applied Physics Letters, 1983, 42, 925-927.	3.3	105
76	Mechanism for enhanced optical nonlinearities and bistability by combined dielectric–electronic confinement in semiconductor microcrystallites. Optics Letters, 1986, 11, 522.	3.3	105
77	Integrated quantum well selfâ€electroâ€optic effect device: 2×2 array of optically bistable switches. Applied Physics Letters, 1986, 49, 821-823.	3.3	103
78	3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit. IEEE Photonics Technology Letters, 1995, 7, 1288-1290.	2.5	103
79	Wavelength-division multiplexing with femtosecond pulses. Optics Letters, 1995, 20, 1166.	3.3	101
80	Optical bistability due to increasing absorption. Optics Letters, 1984, 9, 162.	3.3	100
81	100 ps waveguide multiple quantum well (MQW) optical modulator with 10:1 on/off ratio. Electronics Letters, 1985, 21, 693.	1.0	100
82	All linear optical devices are mode converters. Optics Express, 2012, 20, 23985.	3.4	98
83	Passive mode locking of a semiconductor diode laser. Optics Letters, 1984, 9, 507.	3.3	97
84	Fast escape of photocreated carriers out of shallow quantum wells. Applied Physics Letters, 1991, 59, 66-68.	3.3	97
85	Matrix Optimization on Universal Unitary Photonic Devices. Physical Review Applied, 2019, 11, .	3.8	97
86	Experimental band structure spectroscopy along a synthetic dimension. Nature Communications, 2019, 10, 3122.	12.8	95
87	THz pulses from the creation of polarized electronâ€hole pairs in biased quantum wells. Applied Physics Letters, 1992, 61, 2009-2011.	3.3	94
88	Universal modal radiation laws for all thermal emitters. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4336-4341.	7.1	93
89	Waves, modes, communications, and optics: a tutorial. Advances in Optics and Photonics, 2019, 11, 679.	25.5	92
90	C-shaped nanoaperture-enhanced germanium photodetector. Optics Letters, 2006, 31, 1519.	3.3	90

#	Article	IF	CITATIONS
91	60  dB high-extinction auto-configured Mach–Zehnder interferometer. Optics Letters, 2016, 41, 5318.	3.3	87
92	33 ps optical switching of symmetric selfâ€electroâ€optic effect devices. Applied Physics Letters, 1990, 57, 1843-1845.	3.3	86
93	Multilayer thin-film structures with high spatial dispersion. Applied Optics, 2003, 42, 1330.	2.1	85
94	Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator. Optics Letters, 2005, 30, 141.	3.3	85
95	Generation of ultrashort electrical pulses through screening by virtual populations in biased quantum wells. Physical Review Letters, 1987, 59, 1018-1021.	7.8	82
96	Fundamental Limit to Linear One-Dimensional Slow Light Structures. Physical Review Letters, 2007, 99, 203903.	7.8	82
97	Low-energy ultrafast fiber soliton logic gates. Optics Letters, 1990, 15, 909.	3.3	81
98	The benefits of ultrashort optical pulses in optically interconnected systems. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 477-485.	2.9	79
99	Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale. Chinese Optics Letters, 2009, 7, 302-308.	2.9	79
100	Ge/SiGe Quantum Well Waveguide Modulator Monolithically Integrated With SOI Waveguides. IEEE Photonics Technology Letters, 2012, 24, 461-463.	2.5	78
101	Effect of collisions and relaxation on coherent resonant tunneling: Hole tunneling in GaAs/AlxGa1â^'xAs double-quantum-well structures. Physical Review B, 1990, 42, 7065-7068.	3.2	73
102	Simultaneous measurements of electron and hole sweep-out from quantum wells and modeling of photoinduced field screening dynamics. IEEE Journal of Quantum Electronics, 1992, 28, 2486-2497.	1.9	73
103	Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting. Optics Letters, 2000, 25, 1502.	3.3	67
104	Fundamental limit for optical components. Journal of the Optical Society of America B: Optical Physics, 2007, 24, A1.	2.1	65
105	Reconfigurable add-drop multiplexer for spatial modes. Optics Express, 2013, 21, 20220.	3.4	64
106	A 40-GHz-bandwidth, 4-bit, time-interleaved A/D converter using photoconductive sampling. IEEE Journal of Solid-State Circuits, 2003, 38, 2021-2030.	5.4	63
107	Receiver-less optical clock injection for clock distribution networks. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 400-409.	2.9	62
108	Material Properties of Si-Ge/Ge Quantum Wells. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1082-1089.	2.9	61

#	Article	IF	Citations
109	Communications expands its space. Nature Photonics, 2017, 11, 5-8.	31.4	60
110	How fast is excitonic electroabsorption?. Optics Letters, 1990, 15, 60.	3.3	59
111	Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures. IEEE Photonics Technology Letters, 2003, 15, 1097-1099.	2.5	59
112	C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1â€V swing. Electronics Letters, 2008, 44, 49.	1.0	57
113	Ge–SiGe Quantum-Well Waveguide Photodetectors on Silicon for the Near-Infrared. IEEE Photonics Technology Letters, 2007, 19, 1631-1633.	2.5	56
114	Device Requirements for Optical Interconnects to CMOS Silicon Chips. , 2010, , .		56
115	Exciton saturation in electrically biased quantum wells. Applied Physics Letters, 1990, 57, 2315-2317.	3.3	54
116	Establishing Optimal Wave Communication Channels Automatically. Journal of Lightwave Technology, 2013, 31, 3987-3994.	4.6	53
117	Femtosecond-pulse distortion in quantum wells. Physical Review B, 1993, 48, 17902-17905.	3.2	52
118	Huygens's wave propagation principle corrected. Optics Letters, 1991, 16, 1370.	3.3	50
119	Spatiotemporal control of ultrashort optical pulses by refractive–diffractive–dispersive structured optical elements. Optics Letters, 2001, 26, 1373.	3.3	50
120	Standing-wave Fourier transform spectrometer based on integrated MEMS mirror and thin-film photodetector. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 98-105.	2.9	47
121	Meshing optics with applications. Nature Photonics, 2017, 11, 403-404.	31.4	47
122	Excitons in resonant coupling of quantum wells. Physical Review B, 1990, 42, 1841-1844.	3.2	46
123	High-Efficiency p-i-n Photodetectors on Selective-Area-Grown Ge for Monolithic Integration. IEEE Electron Device Letters, 2009, 30, 1161-1163.	3.9	46
124	Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Optics Express, 2013, 21, 867.	3.4	46
125	Low-temperature growth of GaAs on Si used for ultrafast photoconductive switches. IEEE Journal of Quantum Electronics, 2004, 40, 800-804.	1.9	45
126	The role of optics in computing. Nature Photonics, 2010, 4, 406-406.	31.4	45

#	Article	IF	CITATIONS
127	Design methodology for compact photonic-crystal-based wavelength division multiplexers. Optics Letters, 2011, 36, 591.	3.3	44
128	Setting up meshes of interferometers – reversed local light interference method. Optics Express, 2017, 25, 29233.	3.4	43
129	Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells. Optics Express, 2010, 18, 25596.	3.4	42
130	Parallel Programming of an Arbitrary Feedforward Photonic Network. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-13.	2.9	42
131	Transform spectrometer based on measuring the periodicity of Talbot self-images. Optics Letters, 2001, 26, 1645.	3.3	40
132	Routing and photodetection in subwavelength plasmonic slot waveguides. Nanophotonics, 2012, 1, 9-16.	6.0	40
133	How complicated must an optical component be?. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 238.	1.5	39
134	Receiver sensitivity improvement by impulsive coding. IEEE Photonics Technology Letters, 1997, 9, 684-686.	2.5	38
135	Firehose Architectures for Free-Space Optically Interconnected VLSI Circuits. Journal of Parallel and Distributed Computing, 1997, 41, 109-114.	4.1	38
136	Wannier basis design and optimization of a photonic crystal waveguide crossing. IEEE Photonics Technology Letters, 2005, 17, 1875-1877.	2.5	38
137	Suppression of the observation of Stark ladders in optical measurements on superlattices by excitonic effects. Physical Review B, 1992, 46, 15365-15376.	3.2	37
138	Silicon integrated circuits shine. Nature, 1996, 384, 307-308.	27.8	37
139	Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 338-342.	2.9	37
140	Optical switching based on high-speed phased array optical beam steering. Applied Physics Letters, 2008, 92, .	3.3	37
141	Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics. Optical Materials Express, 2011, 1, 1121.	3.0	37
142	Optical logic using electrically connected quantum well PIN diode modulators and detectors. Applied Optics, 1990, 29, 2153.	2.1	36
143	Novel analog self-electrooptic-effect devices. IEEE Journal of Quantum Electronics, 1993, 29, 678-698.	1.9	35
144	Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch. IEEE Transactions on Electron Devices, 2007, 54, 3252-3259.	3.0	35

#	Article	IF	CITATIONS
145	Modeling of Plasmonic Waveguide Components and Networks. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1808-1826.	0.4	35
146	Simple Electroabsorption Calculator for Designing 1310 nm and 1550 nm Modulators Using Germanium Quantum Wells. IEEE Journal of Quantum Electronics, 2012, 48, 187-197.	1.9	35
147	Optimization of absorption in symmetric self-electrooptic effect devices: a systems perspective. IEEE Journal of Quantum Electronics, 1991, 27, 2431-2439.	1.9	34
148	Limits on the performance of dispersive thin-film stacks. Applied Optics, 2005, 44, 3349.	2.1	34
149	Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition. Applied Physics Letters, $2011,98,.$	3.3	34
150	Electroabsorption in IIâ€VI multiple quantum wells. Applied Physics Letters, 1991, 58, 334-336.	3.3	32
151	Characteristic Impedance Model for Plasmonic Metal Slot Waveguides. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1473-1478.	2.9	31
152	Optical detection of resonant tunnelling of electrons in quantum wells. Semiconductor Science and Technology, 1990, 5, 549-556.	2.0	30
153	Multilayer Thin-Film Stacks With Steplike Spatial Beam Shifting. Journal of Lightwave Technology, 2004, 22, 612-618.	4.6	30
154	Sorting out light. Science, 2015, 347, 1423-1424.	12.6	30
155	Interleaved-contact electroabsorption modulator using doping-selective electrodes with 25 degrees C to 95 degrees C operating range. IEEE Photonics Technology Letters, 1993, 5, 181-184.	2.5	29
156	Spatial channels for communicating with waves between volumes. Optics Letters, 1998, 23, 1645.	3.3	29
157	Plasmonic device in silicon CMOS. Electronics Letters, 2009, 45, 706.	1.0	28
158	Arrays of optoelectronic switching nodes comprised of flip-chip-bonded MQW modulators and detectors on silicon CMOS circuitry. IEEE Photonics Technology Letters, 1996, 8, 221-223.	2.5	27
159	Designing for beam propagation in periodic and nonperiodic photonic nanostructures: Extended Hamiltonian method. Physical Review E, 2004, 70, 036612.	2.1	27
160	Systematic Photonic Crystal Device Design: Global and Local Optimization and Sensitivity Analysis. IEEE Journal of Quantum Electronics, 2006, 42, 266-279.	1.9	27
161	Nanoscale resonant-cavity-enhanced germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths. Optics Express, 2013, 21, 10228.	3.4	27
162	Adapting Mach–Zehnder Mesh Equalizers in Direct-Detection Mode-Division-Multiplexed Links. Journal of Lightwave Technology, 2020, 38, 723-735.	4.6	27

#	Article	lF	Citations
163	Silicon-Based Micro-Fourier Spectrometer. IEEE Transactions on Electron Devices, 2005, 52, 419-426.	3.0	26
164	Electrically controlled modulation in a photonic crystal nanocavity. Optics Express, 2009, 17, 15409.	3 . 4	26
165	Indirect absorption in germanium quantum wells. AIP Advances, 2011, 1, .	1.3	26
166	Analyzing and generating multimode optical fields using self-configuring networks. Optica, 2020, 7, 794.	9.3	26
167	Separating arbitrary free-space beams with an integrated photonic processor. Light: Science and Applications, 2022, 11 , .	16.6	26
168	Laser tuners and wavelength-sensitive detectors based on absorbers in standing waves. IEEE Journal of Quantum Electronics, 1994, 30, 732-749.	1.9	25
169	Ultrafast differential sample and hold using low-temperature-grown GaAs MSM for photonic A/D conversion. IEEE Photonics Technology Letters, 2001, 13, 717-719.	2.5	25
170	Optically controlled electroabsorption modulators for unconstrained wavelength conversion. Applied Physics Letters, 2004, 84, 469-471.	3.3	25
171	SiGe optoelectronic metal-oxide semiconductor field-effect transistor. Optics Letters, 2007, 32, 2022.	3.3	25
172	Ring oscillators with optical and electrical readout based on hybrid GaAs MQW modulators bonded to 0.8 µm silicon VLSI circuits. Electronics Letters, 1995, 31, 1917-1918.	1.0	24
173	High-speed, optically controlled surface-normal optical switch based on diffusive conduction. Applied Physics Letters, 1999, 75, 597-599.	3.3	24
174	Wideband, Low Driving Voltage Traveling-Wave Mach–Zehnder Modulator for RF Photonics. IEEE Photonics Technology Letters, 2008, 20, 517-519.	2.5	24
175	Ge/SiGe asymmetric Fabry-Perot quantum well electroabsorption modulators. Optics Express, 2012, 20, 29164.	3.4	24
176	Skew and jitter removal using short optical pulses for optical interconnection. IEEE Photonics Technology Letters, 2000, 12, 714-716.	2.5	23
177	Wavelength division multiplexed optical interconnect using short pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 486-491.	2.9	23
178	Multifunctional integrated photonic switches. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 86-96.	2.9	22
179	Monolithically-integrated long vertical cavity surface emitting laser incorporating a concave micromirror on a glass substrate. Optics Express, 2004, 12, 3967.	3.4	21
180	High-speed optical beam-steering based on phase-arrayed waveguides. Journal of Vacuum Science & Technology B, 2008, 26, 2124-2126.	1.3	21

#	Article	IF	CITATIONS
181	Highly Tailored Computational Electromagnetics Methods for Nanophotonic Design and Discovery. Proceedings of the IEEE, 2013, 101, 484-493.	21.3	21
182	Silicon sees the light. Nature, 1995, 378, 238-238.	27.8	20
183	Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon complementary-metal-oxide-semiconductor (CMOS) circuits. Applied Optics, 1996, 35, 2439.	2.1	20
184	Photonic A/D conversion using low-temperature-grown gaas msm switches integrated with Si-CMOS. Journal of Lightwave Technology, 2003, 21, 3104-3115.	4.6	20
185	Investigation of Limits to the Optical Performance of Asymmetric Fabry-Perot Electroabsorption Modulators. IEEE Journal of Quantum Electronics, 2012, 48, 198-209.	1.9	20
186	Logic self-electrooptic effect devices: quantum-well optoelectronic multiport logic gates, multiplexers, demultiplexers, and shift registers. IEEE Journal of Quantum Electronics, 1992, 28, 1539-1553.	1.9	19
187	Femtosecond pulse distortion in GaAs quantum wells and its effect on pump-probe or four-wave-mixing experiments. Physical Review B, 1994, 50, 18240-18249.	3.2	19
188	Thin Dielectric Spacer for the Monolithic Integration of Bulk Germanium or Germanium Quantum Wells With Silicon-on-Insulator Waveguides. IEEE Photonics Journal, 2011, 3, 739-747.	2.0	19
189	Surface-Normal Ge/SiGe Asymmetric Fabry–Perot Optical Modulators Fabricated on Silicon Substrates. Journal of Lightwave Technology, 2013, 31, 3995-4003.	4.6	19
190	Relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks. Optics Letters, 2005, 30, 2475.	3.3	18
191	Dual-diode quantum-well modulator for C-band wavelength conversion and broadcasting. Optics Express, 2004, 12, 310.	3.4	17
192	Pump–Probe Measurements of CMOS Detector Rise Time in the Blue. Journal of Lightwave Technology, 2004, 22, 2213-2217.	4.6	17
193	Simultaneous measurement of electron and hole escape times from biased single quantum wells. Applied Physics Letters, 1992, 61, 426-428.	3.3	16
194	Self-Aligning Planarization and Passivation for Integration Applications in Ill–V Semiconductor Devices. IEEE Transactions on Semiconductor Manufacturing, 2005, 18, 182-189.	1.7	16
195	Title is missing!. Optical and Quantum Electronics, 2001, 33, 1035-1054.	3.3	15
196	Equivalence of diffusive conduction and giant ambipolar diffusion. Journal of Applied Physics, 2002, 91, 4374-4381.	2.5	15
197	Photonic crystal device sensitivity analysis with Wannier basis gradients. Optics Letters, 2005, 30, 302.	3.3	15
198	Coherent self-control of free-space optical beams with integrated silicon photonic meshes. Photonics Research, 2021, 9, 2196.	7.0	15

#	Article	IF	CITATIONS
199	MSM-based integrated CMOS wavelength-tunable optical receiver. IEEE Photonics Technology Letters, 2005, 17, 1271-1273.	2.5	14
200	Integrated photonic switches for nanosecond packet-switched optical wavelength conversion. Optics Express, 2006, 14, 361.	3.4	14
201	Straightening out light. Nature Materials, 2006, 5, 83-84.	27.5	14
202	An Optical Interconnect Transceiver at 1550 nm Using Low-Voltage Electroabsorption Modulators Directly Integrated to CMOS. Journal of Lightwave Technology, 2007, 25, 3739-3747.	4.6	14
203	Scalable Wavelength-Converting Crossbar Switches. IEEE Photonics Technology Letters, 2004, 16, 2305-2307.	2.5	13
204	Opportunities for optics in integrated circuits applications. , 0, , .		13
205	Effect of uniaxial-strain on Ge p-i-n photodiodes integrated on Si. Applied Physics Letters, 2009, 95, .	3.3	13
206	Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors. Optics Express, 2012, 20, 22735.	3.4	13
207	Experimental Demonstration of Dynamical Input Isolation in Nonadiabatically Modulated Photonic Cavities. ACS Photonics, 2019, 6, 162-169.	6.6	13
208	Interferometric sensors for spectral imaging. Sensors and Actuators A: Physical, 2005, 120, 110-114.	4.1	12
209	Energy-per-Bit Limits in Plasmonic Integrated Photodetectors. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 3800210-3800210.	2.9	12
210	Better choices than optical angular momentum multiplexing for communications. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9755-E9756.	7.1	12
211	Escape tunneling out of shallow multiple quantum wells studied by transient fourâ€wave mixing. Applied Physics Letters, 1993, 63, 2372-2374.	3.3	11
212	Wavelengthâ€selective detector based on a quantum well in a standing wave. Applied Physics Letters, 1994, 64, 134-136.	3.3	11
213	Self-linearized analog differential self-electro-optic-effect device. Applied Optics, 1994, 33, 1492.	2.1	11
214	High-impedance high-frequency silicon detector response for precise receiverless optical clock injection., 2002, 4654, 78.		11
215	Optical pump-probe measurements of the latency of silicon CMOS optical interconnects. IEEE Photonics Technology Letters, 2002, 14, 1214-1216.	2.5	11
216	B-CALM: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. Optical and Quantum Electronics, 2012, 44, 285-290.	3.3	11

#	Article	IF	Citations
217	Designing Linear Optical Components. Optics and Photonics News, 2013, 24, 38.	0.5	11
218	Wavelength dependence of saturation and thermal effects in multiple quantum well modulators. Applied Physics Letters, 1993, 63, 1715-1717.	3.3	10
219	Digital Fourier optics. Applied Optics, 1996, 35, 1212.	2.1	10
220	Novel electrically controlled rapidly wavelength selective photodetection using MSMs. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 184-189.	2.9	10
221	Optical Spatial Quantization for Higher Performance Analog-to-Digital Conversion. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 2143-2150.	4.6	10
222	Selective area growth of germanium and germanium/silicon-germanium quantum wells in silicon waveguides for on-chip optical interconnect applications. Optical Materials Express, 2012, 2, 1336.	3.0	10
223	B-CALM: AN OPEN-SOURCE MULTI-GPU-BASED 3D-FDTD WITH MULTI-POLE DISPERSION FOR PLASMONICS. Progress in Electromagnetics Research, 2013, 138, 467-478.	4.4	10
224	Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing. Optics Express, 2014, 22, 646.	3.4	10
225	Nonlinear Optical Properties of GaAs/(AlGa)As Multiple Quantum Well Structures under Quasistationary High Excitation Conditions. Physica Status Solidi (B): Basic Research, 1990, 159, 173-180.	1.5	9
226	Quantum well optical tri-state devices. Applied Optics, 1990, 29, 1157.	2.1	9
227	Analog differential self-linearized quantum-well self-electro-optic-effect modulator. Optics Letters, 1993, 18, 974.	3.3	9
228	Latency in short pulse based optical interconnects. , 0, , .		9
229	Adaptive time-domain filtering for real-time spectral discrimination in a Michelson interferometer. Optics Letters, 2002, 27, 1147.	3.3	9
230	Ultrafast optoelectronic sample-and-hold using low-temperature-grown GaAs MSM. IEEE Photonics Technology Letters, 2003, 15, 724-726.	2.5	9
231	Intimate monolithic integration of chip-scale photonic circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1255-1265.	2.9	9
232	Quantum Well Optical Switching Devices. NATO ASI Series Series B: Physics, 1995, , 675-701.	0.2	9
233	Linear image differentiation by use of analog differential self-electro-optic effect devices. Optics Letters, 1994, 19, 1882.	3.3	8
234	The AMOEBA chip: an optoelectronic switch for multiprocessor networking using dense-WDM., 0,,.		8

#	Article	IF	Citations
235	Commentary: Metallic nanodevices for chip-scale optical interconnects. Journal of Nanophotonics, 2009, 3, 030302.	1.0	8
236	A Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. , $2011, \ldots$		8
237	Light emission from strained germanium. Nature Photonics, 2013, 7, 162-163.	31.4	8
238	Carrier escape dynamics in a single quantum well waveguide modulator. Optical and Quantum Electronics, 1993, 25, S965-S971.	3.3	7
239	Photonic crystal for communication applications. , 2002, , .		7
240	Low capacitance CMOS silicon photodetectors for optical clock injection. Applied Physics A: Materials Science and Processing, 2009, 95, 1129-1135.	2.3	7
241	Optically-switched Dual-diode Electroabsorption Modulator. , 2003, , .		7
242	Free-Space Photonics in Switching. At&T Technical Journal, 1992, 71, 84-92.	0.3	6
243	Carrier escape tunnelling out of shallow multiple quantum wells studied by transient four-wave mixing. Semiconductor Science and Technology, 1994, 9, 523-525.	2.0	6
244	Growth of GaAs light modulators on Si by gas source molecular-beam epitaxy for 850 nm optical interconnects. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 1246.	1.6	6
245	32 channel WDM graphic equalizer. , 0, , .		6
246	Wavelength monitor based on two single-quantum-well absorbers sampling a standing wave pattern. Applied Physics Letters, 2000, 76, 3185-3187.	3.3	6
247	Compact Fourier transform spectrometer based on sampling a standing wave. , 0, , .		6
248	Ultrafast sampling using low temperature grown GaAs MSM switches integrated with CMOS amplifier for photonic A/D conversion. , 0 , , .		6
249	Latency reduction in optical interconnects using short optical pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9, 410-418.	2.9	6
250	Adaptive imaging spectrometer in a time-domain filtering architecturedaptive Imaging Spectrometer in a Time-Domain Filtering Architecture. Optics Express, 2003, 11, 1960.	3.4	6
251	A single transverse-mode monolithically integrated long vertical-cavity surface-emitting laser. IEEE Photonics Technology Letters, 2005, 17, 1366-1368.	2.5	6
252	Optical Interconnects. , 2010, , .		6

#	Article	IF	Citations
253	Novel optically-controlled optical switch based on intimate integration of surface-normal photodiode and waveguide electroabsorption modulator for wavelength conversion., 0,,.		5
254	Novel on-chip fully monolithic integration of GaAs devices with completely fabricated Si CMOS circuits. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11, 1278-1283.	2.9	5
255	Temporal and spectral nonspecularities in reflection at surface plasmon resonance. Applied Physics Letters, 2006, 89, 041102.	3.3	5
256	Femtosecond carrier dynamics in Ge/SiGe quantum wells., 2007,,.		5
257	<title>Hole tunneling in GaAs/AlGaAs heterostructures: coherent versus incoherent resonant tunneling</title> ., 1990, 1283, 35.		4
258	<title>Excitons in resonantly coupled quantum wells</title> ., 1990, 1283, 164.		4
259	<title>Quantum-well devices for optics in digital systems</title> ., 1991, 1389, 496.		4
260	Hybrid SEED-massively parallel optical interconnections for silicon ICs., 0,,.		4
261	Wavelength division multiplexed optical interconnects using femtosecond optical pulses., 0,,.		4
262	Performance enhancement of an optical interconnect using short pulses from a modelocked diode laser. , 0 , , .		4
263	Receiverless detection schemes for optical clock distribution. , 2004, , .		4
264	Large-Signal Response of p-i-n Photodetectors Using Short Pulses With Small Spot Sizes. IEEE Journal of Quantum Electronics, 2004, 40, 143-151.	1.9	4
265	Photonic nanostructures for wavelength division multiplexing. , 2004, , .		4
266	Self-aligned via and trench for metal contact in III-V semiconductor devices. Journal of Vacuum Science & Technology B, 2006, 24, 1117.	1.3	4
267	Si-Ge surface-normal asymmetric Fabry-Perot quantum-confined stark effect electroabsorption modulator. , 2010, , .		4
268	Modal Source Radiator Model for Arbitrary Two-Dimensional Arrays of Subwavelength Apertures on Metal Films. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4601110-4601110.	2.9	4
269	WDM/SDM fiber network design for the AMOEBA optoelectronic switch. , 0, , .		3
270	Optical interconnect technologies for Si ULSI. , 0, , .		3

#	Article	IF	Citations
271	Dual-Function Detector–Modulator Smart-Pixel Module. Applied Optics, 1997, 36, 4866.	2.1	3
272	Parallel-plate MEMS mirror design for large on-resonance displacement., 0,,.		3
273	Wide bandwidth, large, and tunable polarization mode dispersions in multilayered omnidirectional reflectors. Applied Physics Letters, 2002, 81, 187-189.	3.3	3
274	Differential optical remoting of ultrafast charge packets using self-linearized modulation., 0,,.		3
275	Receiverless clocking of a CMOS digital circuit using short optical pulses. , 0, , .		3
276	High-speed optical switching based on diffusive conduction in an optical waveguide with surface-normal optical control. Journal of Applied Physics, 2004, 95, 2258-2263.	2.5	3
277	Opportunities for optics to silicon chips. , 2005, , .		3
278	Spectral shaping of electrically controlled MSM-based tunable photodetectors. IEEE Photonics Technology Letters, 2005, 17, 2158-2160.	2.5	3
279	Plasmonic device in Si CMOS., 2008, , .		3
280	B-CALM: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. , 2011, , .		3
281	Nanoscale resonant-cavity-enhanced Germanium photodetectors with lithographically defined spectral response for improved performance at telecommunications wavelengths., 2013,,.		3
282	Photocurrent saturation in short-period superlattice modulators. Electronics Letters, 1990, 26, 736-737.	1.0	2
283	Dense WDM with femtosecond laser pulses. , 0, , .		2
284	Why use optics for interconnects., 0,,.		2
285	Communicating with waves between volumes: how many different spatial channels are there?. , 1998, 3490, 111.		2
286	Optical interconnects using short optical pulses. , 0, , .		2
287	High-speed sample and hold using low temperature grown GaAs MSM switches for photonic A/D conversion. , $2001, \dots$		2
288	Demonstration of a wavelength division multiplexed chip-to-chip optical interconnect., 0,,.		2

#	Article	IF	CITATIONS
289	Optical interconnects to silicon CMOS., 0, , .		2
290	Thin-film (DE)MUX based on step-like spatial beam shifting. , 0, , .		2
291	Low Temperature Growth of GaAs on Si Substrates for Ultra-fast Photoconductive Switches. Materials Research Society Symposia Proceedings, 2003, 768, 3141.	0.1	2
292	Novel electrically tunable MSM photodetector for resolving WDM channels. , 0, , .		2
293	Guest Editorial Special Issue on Optical Interconnects. Journal of Lightwave Technology, 2004, 22, 2018-2020.	4.6	2
294	Optical Spatially Quantized High Performance Analog-to-digital Conversion., 2007,,.		2
295	The Fundamental Limit to Optical Components. Optics and Photonics News, 2007, 18, 27.	0.5	2
296	High efficiency monolithic photodetectors for integrated optoelectronics in the near infrared. , 2009, , .		2
297	Design and Analysis of CMOS-Controlled Tunable Photodetectors for Multiwavelength Discrimination. Journal of Lightwave Technology, 2009, 27, 5451-5460.	4.6	2
298	Integration of germanium quantum well structures on a silicon-on-insulator waveguide platform for optical modulator applications. , $2010, \dots$		2
299	Spot size effects in asymmetric fabry-perot electroabsorption modulators. , 2010, , .		2
300	Ge quantum well resonator modulators., 2011,,.		2
301	Attojoule optoelectronics - Why and how. , 2013, , .		2
302	Limit to the performance of optical components. , 2006, , .		2
303	Saving Energy and Increasing Density in Information Processing Using Photonics. , 2020, , .		2
304	3-D integration of MQW SEED detectors and modulators over active sub-micron CMOS circuits: Application to a 2KBit parallel photonic page buffer. , 0, , .		1
305	Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon complementary-metal-oxide-semiconductor (CMOS) circuits: errata. Applied Optics, 1996, 35, 4637.	2.1	1
306	Fabrication and testing of AMOEBA: an opto-electronic switch for multiprocessor networking., 0,,.		1

#	Article	IF	CITATIONS
307	Free-space optical interconnections for VLSI systems: a technology roadmap. , 0, , .		1
308	<title>Degrees of freedom of an electromagnetic wave</title> ., 1999, 3749, 110.		1
309	<title>Motivations for optical interconnects to silicon chips (Abstract Only)</title> ., 2000, , .		1
310	Ultrafast differential sample and hold using low temperature grown GaAs MSM for photonic A/D conversion. , 2000, , .		1
311	Adaptive imaging spectrometer in a time-domain filtering architecture. , 0, , .		1
312	Integrated standing-wave transform spectrometer for near infrared optical analysis. , 0, , .		1
313	Electrically-reconfigurable integrated photonic switches. , 0, , .		1
314	Systematic photonic crystal device global and local optimization, and sensitivity analysis., 2005, 6017, 20.		1
315	Optical Link on Silicon Employing Ge/SiGe Quantum Well Structures. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	1
316	Joining optics and electronics for information processing and communication. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	1
317	Nanostructured optics and optoelectronics for dense optical interconnects., 2007,,.		1
318	Ge Quantum Well Modulators on Si. ECS Transactions, 2009, 16, 851-856.	0.5	1
319	Simple electroabsorption model for germanium quantum well devices. , 2010, , .		1
320	Simple electroabsorption model for silicongermanium/germanium quantum well devices. , 2010, , .		1
321	B-CALM: an open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics. Proceedings of SPIE, 2012, , .	0.8	1
322	Scalable optical transmitter and receiver based on cascaded nanoresonator modulators and multiwavelength laser. , 2013, , .		1
323	Getting to femtojoule optics – what physics and what technology?. , 2021, , .		1
324	Receiver-less Optical Clock Distribution using Short Pulses. , 2003, , .		1

#	Article	IF	CITATIONS
325	Multifunctional Integrated Photonic Switches for Nanosecond Packet-Switched Wavelength Conversion., 2005,,.		1
326	Material properties in SiGe/Ge quantum wells. , 2007, , .		1
327	Optical Modulator on Si Employing Ge Quantum Wells. , 2007, , .		1
328	Fundamental Limit to Delay-Bandwidth Product in One-Dimensional Linear Optical Structures., 2007,,.		1
329	Low-Energy Optoelectronics for Interconnects. , 2013, , .		1
330	Quantum Well Optical Switching Devices. , 1995, , 255-284.		1
331	Parallel Fault-Tolerant Programming and Optimization of Photonic Neural Networks. , 2020, , .		1
332	Photonic chips embrace piezo-optomechanics. Nature Photonics, 2022, 16, 10-11.	31.4	1
333	Prospects for THz quantum well optoelectronics. , 1990, , .		0
334	Response to â€ã€Comment on â€Optical bistability in selfâ€electroâ€optic effect devices with asymmetric quantum wells' and on â€Novel configuration of selfâ€electroâ€optic effect device based on asymmetric quantum wells' '' [Appl. Phys. Lett. 57, 1363 (1990)]. Applied Physics Letters, 1990, 57, 1364-13	3.3 365.	0
335	The future of SEED structures in optical processing and switching. , 0, , .		0
336	15 νm solder bonding of GaAs/AlGaAs MQW devices to MOSIS 0.8 νm CMOS for 1 Gb/s two-beam smart-pixel receiver/transmitter. , 0, , .		0
337	Physical and systems motivations for smart pixels. , 0, , .		0
338	<title>Optical test of a photonic FIFO page buffer memory</title> ., 1996, 2692, 213.		0
339	A New Focus with Milton Chang. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 1996, 12, 45.	0.4	0
340	High-speed quantum-well optoelectronic gate based on diffusive conduction recovery. , 1998, , .		0
341	Wavelength monitor based on two single quantum well absorbers in a standing wave. , 0, , .		0
342	Transform spectrometer based on measuring periodicity of Talbot self-images. , 0, , .		0

#	Article	IF	CITATIONS
343	Spatio-temporal propagation of ultrashort pulses controlled by structured optical elements. , 0, , .		O
344	Wavelength demultiplexing by beam shifting using a dielectric stack as a one-dimensional photonic crystal. , 0 , , .		0
345	Demonstration of an optoelectronic dual-diode optically controlled optical gate with a 20 picosecond repetition period. , 0, , .		0
346	Photonic analog to digital converter using ultrafast photoconductors. , 0, , .		0
347	Optical interconnects to silicon CMOS. , 0, , .		0
348	Observation of wavelength-converting optical switching at 2.5 GHz in a surface-normal illuminated waveguide. , 0, , .		0
349	Optical interconnect operation with high noise immunity. , 0, , .		0
350	Adaptive coherence imaging system with time-domain filtering. , 0, , .		0
351	Thin-film-technology-based micro-Fourier spectrometer. , 2003, , .		0
352	All-silicon standing-wave microspectrometer with spectral resolution. , 0, , .		0
353	Adaptive spectra-selective imaging by real-time photoconductor bias modulation. , 0, , .		0
354	Electrical characterizations of smart hydrogel based on chitosan/poly(diallydimethylammonium) Tj ETQq0 0 0 rg	3T /Overlo	ck 10 Tf 50 3
355	Low-voltage surface-normal InGaAsP/InP modulator for optical interconnects. , 0, , .		0
356	Adaptive coherence-sensing imaging spectrometer. , 0, , .		0
357	Wavelength division multiplexing using dispersive thin-film stacks. , 0, , .		0
358	Spectral shaping of electrically controlled MSM-based rapidly tunable photodetectors., 2005,,.		0
359	Single ultrafast diffusive conduction based optoelectronic switch for multi-channel operation. , 2005, , .		0
360	MSM-based integrated CMOS wavelength tunable optical receiver. , 0, , .		0

#	Article	IF	CITATIONS
361	Photonic crystal device sensitivity analysis and optimization with Wannier basis gradients., 0,,.		O
362	Linear differential electro-optic conversion of sampled voltage signals using a MSM and multiple quantum well modulators. , 2005, , .		0
363	Quantum-confined Stark effect electroabsorption in Ge/SiGe quantum wells on silicon substrates. , 2005, , .		0
364	Linear electro-optic conversion of sampled voltage signals using a low-temperature-grown GaAs MSM and a multiple quantum well modulator. , 2005, , .		0
365	Nonlinear Optical Effects in InxGa(1-x)As Quantum Systems for Saturable Absorbers. , 2006, , .		0
366	Ge/SiGe Quantum Confined Stark Effect Modulators on Silicon., 2006,,.		0
367	Optoelectronic switches based on diffusive conduction. Journal of Applied Physics, 2006, 100, 043107.	2.5	0
368	Novel Si-based Optoelectronic Switching Device: Light to Latch. , 2007, , .		0
369	Recent Advances in Germanium Quantum Well Structures - A New Modulation Mechanism for Silicon-Compatible Optics. , 2007, , .		0
370	Novel Si-based CMOS Optoelectronic Switching Device Operating in the Near Infrared., 2007,,.		0
371	Nanostructured Optics and Optoelectronics for Dense Optical Interconnects. , 2007, , .		0
372	The Quantum Confined Stark Effect in Ge/SiGe Quantum Wells: An efficient electroabsorption mechanism for silicon-based applications. , 2007, , .		0
373	Devices for Optical Interconnects to Chips. , 2007, , .		0
374	Novel devices for optical interconnects to chips. , 2008, , .		0
375	Monolithic Integration of GaAs/AlGaAs Phase Modulator and Photodetector for RF Photonics. , 2008, ,		0
376	Germanium on Silicon Modulators and Nanometallic-Enhanced Detectors for Optical Interconnects. , 2008, , .		0
377	Balanced computing with nanophotonic interconnects. , 2008, , .		0
378	Devices for optical interconnects to chips. , 2008, , .		0

#	Article	IF	Citations
379	Quantum Wells and Nanophotonics: Physics, Applications and Limits. , 2009, , .		O
380	Device requirements for dense interconnects. , 2009, , .		0
381	Ultrafast absorption recovery in germanium/silicon-germanium quantum wells. , $2010, , .$		0
382	Si-Ge surface-normal asymmetric fabry-perot quantum-confined stark effect electroabsorption modulator. , 2010, , .		0
383	Intervalley scattering and field screening in germanium/silicon-germanium quantum wells., 2010,,.		0
384	Photonics for interconnect inside machines. , 2010, , .		0
385	Simple electroabsorption calculator for germanium quantum well devices. , 2011, , .		0
386	Nanometallic concentration for enhanced photodetection. , 2011, , .		0
387	Routing and Detection of Light on Deeply Subwavelength scale in Two-conductor Metallic Slot Waveguides. , 2012, , .		0
388	Light Emission in Ge Quantum Wells., 2012,,.		0
389	Optical Transmission through Arbitrarily Located Subwavelength Apertures on Metal Films. , 2012, , .		0
390	Energy use in optical modulators. , 2012, , .		0
391	Temperature dependence of Ge quantum well light emitting diode on Si substrate., 2012,,.		0
392	Selective-Area Growth of Ge and Ge/SiGe Quantum Wells in 3 $\hat{l}\frac{1}{4}m$ Silicon-on-Insulator Waveguides. , 2012, , .		0
393	Ge/SiGe quantum well asymmetric Fabry-Perot modulators on silicon substrates. , 2013, , .		0
394	New device concepts for low-energy high-density interconnects. , 2013, , .		0
395	Separating arbitrary overlapping spatial modes losslessly and without calculations. , 2013, , .		0
396	Energy-per-bit and noise limits in plasmonic intergrated photodetectors. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
397	Nanophotonics and interconnects - Status and future directions. , 2014, , .		O
398	Design of large scale plasmonic nanoslit arrays for arbitrary mode conversion and demultiplexing. Proceedings of SPIE, 2014 , , .	0.8	0
399	Arbitrary self-configuring optics with silicon photonics. , 2015, , .		0
400	Arbitrary and self-configuring photonic circuits for sensing and processing. , 2017, , .		0
401	Arbitrary and Reconfigurable Optics – New Opportunities for Integrated Photonics. , 2017, , .		0
402	Wavelength-Division Multiplexed Optical Cryptocurrency., 2021,,.		0
403	Optics at the chip scale?. , 2004, , .		0
404	Limits to Photonics for Information. , 2005, , .		0
405	Germanium electroabsorption devices on silicon for optical interconnects., 2006,,.		0
406	Germanium Quantum-Well Photonic Devices on Silicon., 2007,,.		0
407	Waveguide Electroabsorption Modulator on Si Employing Ge/SiGe Quantum Wells., 2007,,.		0
408	Fundamental Limits in Linear One-Dimensional Slow Light Structures. , 2008, , .		0
409	Material properties in Si-Ge/Ge quantum wells for silicon-integrated electro-absorption devices. , 2008, , .		0
410	Fundamental Limit for Optical Devices. , 2009, , .		0
411	Si-Ge Surface-Normal Asymmetric Fabry-Perot Electroabsorption Modulator. , 2010, , .		0
412	Fundamental Limits to Optical Components. , 2010, , .		0
413	Design Methodology for Compact Photonic Crystal Wavelength Division Multiplexers. , 2011, , .		0
414	Device Challenges and Opportunities for Optical Interconnects., 2011,,.		0

#	Article	IF	Citations
415	A Novel Optoelectronic Device Complimentary to Photodetector., 2011,,.		O
416	The Roles of Optics in Information Processing. , 2012, , .		0
417	Self-aligned Silicon Fins in Metallic Slits as a Platform for Planar Tunable Nanoscale Resonant Photodetectors. , 2012, , .		O
418	Nanoscale Integrated Planar Multispectral Image Sensors. , 2013, , .		0
419	Designing Arbitrary Linear Optical Components Without Calculations. , 2014, , .		O
420	Arbitrary Optical Transformations Without Calculations., 2014,,.		O
421	Arbitrary and Self-Configuring Optics – New Opportunities for Integrated and Nano Photonics. , 2016, , .		0
422	Novel Integrated and Self-Configuring Photonic Architectures for Sensing, Communications and Processing, , 2017, , .		0
423	Self-configuring integrated photonic networks for communications, switching and processing. , 2018, , .		0
424	Photonics to save energy and increase density in information processing. , 2020, , .		0
425	Optics for digital information processing. , 2020, , 433-461.		0
426	Finding the right modes for communicating with optics. , 2020, , .		0
427	Optically-controlled optical gate using a double diode structure. , 0, , .		O
428	The New Multimode Optics - Understanding and Exploiting Controllable Complexity. , 2021, , .		0
429	Self-Configuring Complex Photonic Circuits. , 2021, , .		0