
Magnus Tobiasson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Limited benefit in patients with MDS receiving venetoclax and azacitidine as a bridge to allogeneic stem cell transplantation. Leukemia and Lymphoma, 2022, 63, 755-758.	0.6	3
2	Failure to reach hematopoietic allogenic stem cell transplantation in patients with myelodysplastic syndromes planned for transplantation: a population-based study. Bone Marrow Transplantation, 2022, 57, 598-606.	1.3	2
3	"Randomized phase II study of azacitidine ± lenalidomide in higher-risk myelodysplastic syndromes and acute myeloid leukemia with a karyotype including Del(5q)― Leukemia, 2022, 36, 1436-1439.	3.3	6
4	The extent of residual WT HSPCs is associated with the degree of anemia in patients with <i>SF3B1</i> -mutated MDS-RS. Blood Advances, 2022, 6, 4705-4709.	2.5	2
5	Molecular International Prognostic Scoring System for Myelodysplastic Syndromes. , 2022, 1, .		259
6	Absence of a common founder mutation in patients with cooccurring myelodysplastic syndrome and plasma cell disorder. Blood, 2021, 137, 1260-1263.	0.6	5
7	Multicenter Next-Generation Sequencing Studies between Theory and Practice. Journal of Molecular Diagnostics, 2021, 23, 347-357.	1.2	1
8	Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nature Medicine, 2020, 26, 1549-1556.	15.2	372
9	Clinical Impacts of Germline <i>DDX41</i> Mutations on Myeloid Neoplasms. Blood, 2020, 136, 38-40.	0.6	7
10	Myelodysplastic syndromes: moving towards personalized management. Haematologica, 2020, 105, 1765-1779.	1.7	52
11	Prediction of Relapse after Allogeneic Stem Cell Transplantation Using Individualized Minimal Residual Markers; The Prospective Nordic Study NMDSG14B. Blood, 2020, 136, 5-6.	0.6	0
12	<i>Post-Treatment Clone Size Predicts Survival Independently of IPSS-R and Response after Azacitidine Therapy for MDS.</i> . Blood, 2020, 136, 12-13.	0.6	0
13	Mutation Profiles Identify Distinct Clusters of Lower Risk Myelodysplastic Syndromes with Unique Clinical and Biological Features and Clinical Endpoints. Blood, 2020, 136, 29-29.	0.6	2
14	Angioimmunoblastic T-cell lymphoma and myelodysplastic syndrome with mutations in <i>TET2</i> , <i>DNMT3</i> and <i>CUX1</i> – azacitidine induces only lymphoma remission. Leukemia and Lymphoma, 2019, 60, 3316-3319.	0.6	11
15	Treatment of myelodysplastic syndrome in the era of nextâ€generation sequencing. Journal of Internal Medicine, 2019, 286, 41-62.	2.7	13
16	Male sex and the pattern of recurrent myeloid mutations are strong independent predictors of blood transfusion intensity in patients with myelodysplastic syndromes. Leukemia, 2019, 33, 522-527.	3.3	7
17	Azacitidine in Lower-Risk Myelodysplastic Syndromes: A Meta-Analysis of Data from Prospective Studies. Oncologist, 2018, 23, 159-170.	1.9	27
18	SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood, 2017, 130, 881-890.	0.6	66

MAGNUS TOBIASSON

#	Article	IF	CITATIONS
19	Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Reports, 2017, 20, 572-585.	2.9	99
20	Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget, 2017, 8, 28812-28825.	0.8	42
21	Mutations in histone modulators are associated with prolonged survival during azacitidine therapy. Oncotarget, 2016, 7, 22103-22115.	0.8	37
22	Mutations in Histone Modulators Are Associated with Prolonged Survival during Azacitidine Therapy. Blood, 2015, 126, 2839-2839.	0.6	0
23	Limited clinical efficacy of azacitidine in transfusion-dependent, growth factor-resistant, low- and Int-1-risk MDS: Results from the nordic NMDSG08A phase II trial. Blood Cancer Journal, 2014, 4, e189-e189.	2.8	48
24	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	7.7	272
25	Azacitidine induces profound genome-wide hypomethylation in primary myelodysplastic bone marrow cultures but may also reduce histone acetylation. Leukemia, 2014, 28, 411-413.	3.3	14
26	Identification of a Prognostic Gene Expression Signature for AZA Response in MDS and CMML Patients. Blood, 2014, 124, 4601-4601.	0.6	0
27	Mutations in Histone Modulators and HOXA5 Methylation Levels Affects Survival in Azacitidine Treated MDS Patients. Blood, 2014, 124, 4613-4613.	0.6	0
28	Diverse Genetic Lesions In Myelodysplastic Syndromes Originate Exclusively In Rare MDS Stem Cells. Blood, 2013, 122, 4195-4195.	0.6	0
29	Allelic Methylation Levels of VTRNA2-1 Predict Outcome in Higher Risk MDS Patients Not Treated by Azacytidine Blood, 2012, 120, 2394-2394.	0.6	0
30	Early detection of relapse in patients with myelodysplastic syndrome after allo-SCT. Bone Marrow Transplantation, 2011, 46, 719-726.	1.3	15
31	Evaluation of Azacitidine in Transfusion-Dependent, Epo-Refractory Patients with Lower-Risk Myelodysplastic Syndrome,. Blood, 2011, 118, 3798-3798.	0.6	0
32	High prevalence of restless legs syndrome among patients with polycytemia vera treated with venesectio. Medical Oncology, 2010, 27, 105-107.	1.2	17