Darren W Engers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Discovery of VU6028418: A Highly Selective and Orally Bioavailable M4 Muscarinic Acetylcholine Receptor Antagonist. ACS Medicinal Chemistry Letters, 2021, 12, 1342-1349.	2.8	6
2	Discovery of "Molecular Switches―within a Series of mGlu ₅ Allosteric Ligands Driven by a "Magic Methyl―Effect Affording Both PAMs and NAMs with <i>In Vivo</i> Activity, Derived from an M ₁ PAM Chemotype. ACS Bio & Med Chem Au, 2021, 1, 21-30.	3.7	3
3	Discovery of a novel class of heteroaryl-pyrrolidinones as positive allosteric modulators of the muscarinic acetylcholine receptor M1. Bioorganic and Medicinal Chemistry Letters, 2021, 47, 128193.	2.2	2
4	Development of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes - Part 2. Bioorganic and Medicinal Chemistry Letters, 2021, 53, 128416.	2.2	0
5	Discovery of structurally distinct tricyclic M4 positive allosteric modulator (PAM) chemotypes. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126811.	2.2	3
6	Discovery of a novel 2,3-dimethylimidazo[1,2-a]pyrazine-6-carboxamide M4 positive allosteric modulator (PAM) chemotype. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126812.	2.2	2
7	Discovery, synthesis and characterization of a series of 7-aryl-imidazo[1,2-a]pyridine-3-ylquinolines as activin-like kinase (ALK) inhibitors. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127418.	2.2	6
8	Discovery of a novel 3,4-dimethylcinnoline carboxamide M4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 126678.	2.2	7
9	Structure-Activity Relationships, Pharmacokinetics, and Pharmacodynamics of the Kir6.2/SUR1-Specific Channel Opener VU0071063. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 350-359.	2.5	13
10	SAR inspired by aldehyde oxidase (AO) metabolism: Discovery of novel, CNS penetrant tricyclic M4 PAMs. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2224-2228.	2.2	4
11	VU6005806/AZN-00016130, an advanced M4 positive allosteric modulator (PAM) profiled as a potential preclinical development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1714-1718.	2.2	6
12	Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1601-1604.	2.2	5
13	M1 Muscarinic Receptors Modulate Fear-Related Inputs to the Prefrontal Cortex: Implications for Novel Treatments of Posttraumatic Stress Disorder. Biological Psychiatry, 2019, 85, 989-1000.	1.3	25
14	Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1211-1214.	2.2	14
15	Novel M4 positive allosteric modulators derived from questioning the role and impact of a presumed intramolecular hydrogen-bonding motif in β-amino carboxamide-harboring ligands. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 362-366.	2.2	4
16	Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu ₇ Negative Allosteric Modulator (NAM) in Vivo Tool Compound: <i>N</i> -(2-(1 <i>H</i> -1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamic (VU6012962). Journal of Medicinal Chemistry, 2019, 62, 1690-1695.	de ^{6.4}	20
17	The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 342-346.	2.2	6
18	Discovery of VU2957 (Valiglurax): An mGlu4 Positive Allosteric Modulator Evaluated as a Preclinical Candidate for the Treatment of Parkinson's Disease. ACS Medicinal Chemistry Letters, 2019, 10, 255-260.	2.8	17

DARREN W ENGERS

#	Article	IF	CITATIONS
19	Discovery, Structure–Activity Relationship, and Biological Characterization of a Novel Series of 6-((1 <i>H</i> -Pyrazolo[4,3- <i>b</i>]pyridin-3-yl)amino)-benzo[<i>d</i>]isothiazole-3-carboxamides as Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 4 (mGlu ₄). Iournal of Medicinal Chemistry, 2019, 62, 342-358.	6.4	16
20	M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology, 2018, 43, 1763-1771.	5.4	56
21	VU6007477, a Novel M1 PAM Based on a Pyrrolo[2,3-b]pyridine Carboxamide Core Devoid of Cholinergic Adverse Events. ACS Medicinal Chemistry Letters, 2018, 9, 917-922.	2.8	11
22	Discovery and characterization of N-(1,3-dialkyl-1H-indazol-6-yl)-1H-pyrazolo[4,3-b]pyridin-3-amine scaffold as mGlu4 positive allosteric modulators that mitigate CYP1A2 induction liability. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2641-2646.	2.2	9
23	The discovery of VU0486846: steep SAR from a series of M1 PAMs based on a novel benzomorpholine core. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2175-2179.	2.2	10
24	Optimization of M 4 positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate in vivo tool compound for translational pharmacology. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2296-2301.	2.2	17
25	Synthesis and evaluation of 4,6-disubstituted pyrimidines as CNS penetrant pan -muscarinic antagonists with a novel chemotype. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2479-2483.	2.2	2
26	novel, CNS penetrant pan-muscarinic antagonists. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3576-3581.	2.2	10
27	Diverse Effects on M ₁ Signaling and Adverse Effect Liability within a Series of M ₁ Ago-PAMs. ACS Chemical Neuroscience, 2017, 8, 866-883.	3.5	44
28	Discovery of VU0467485/AZ13713945: An M ₄ PAM Evaluated as a Preclinical Candidate for the Treatment of Schizophrenia. ACS Medicinal Chemistry Letters, 2017, 8, 233-238.	2.8	43
29	Challenges in the development of an M 4 PAM in vivo tool compound: The discovery of VU0467154 and unexpected DMPK profiles of close analogs. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 171-175.	2.2	32
30	Discovery of a novel 2,4-dimethylquinoline-6-carboxamide M 4 positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4999-5001.	2.2	15
31	Challenges in the development of an M 4 PAM preclinical candidate: The discovery, SAR, and biological characterization of a series of azetidine-derived tertiary amides. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5179-5184.	2.2	17
32	Discovery of a novel, CNS penetrant M4 PAM chemotype based on a 6-fluoro-4-(piperidin-1-yl)quinoline-3-carbonitrile core. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4274-4279.	2.2	8
33	Discovery of VU6005649, a CNS Penetrant mGlu _{7/8} Receptor PAM Derived from a Series of Pyrazolo[1,5- <i>a</i>]pyrimidines. ACS Medicinal Chemistry Letters, 2017, 8, 1110-1115.	2.8	28
34	mGlu ₇ potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Science Translational Medicine, 2017, 9, .	12.4	55
35	VU6010608, a Novel mGlu ₇ NAM from a Series of <i>N</i> -(2-(1 <i>H</i> -1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Medicinal Chemistry Letters, 2017, 8, 1326-1330	2.8	18
36	Discovery of 3-aminopicolinamides as metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulator warheads engendering CNS exposure and in vivo efficacy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2915-2919.	2.2	3

#	Article	IF	CITATIONS
37	Discovery and SAR of a novel series of potent, CNS penetrant M4 PAMs based on a non-enolizable ketone core: Challenges in disposition. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4282-4286.	2.2	11
38	An insecticide resistance-breaking mosquitocide targeting inward rectifier potassium channels in vectors of Zika virus and malaria. Scientific Reports, 2016, 6, 36954.	3.3	55
39	Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. Journal of Neuroscience, 2015, 35, 7600-7615.	3.6	40
40	Identification of Positive Allosteric Modulators VU0155094 (ML397) and VU0422288 (ML396) Reveals New Insights into the Biology of Metabotropic Glutamate Receptor 7. ACS Chemical Neuroscience, 2014, 5, 1221-1237.	3.5	53
41	Discovery and Characterization of a Potent and Selective Inhibitor of Aedes aegypti Inward Rectifier Potassium Channels. PLoS ONE, 2014, 9, e110772.	2.5	40