Shujin Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135306/publications.pdf Version: 2024-02-01

<u> Снишы Ноц</u>

#	Article	IF	CITATIONS
1	Three-Dimensional Networked Metal–Organic Frameworks with Conductive Polypyrrole Tubes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 38737-38744.	4.0	364
2	ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 20428-20438.	5.2	192
3	Metal-organic frameworks derived yolk-shell ZnO/NiO microspheres as high-performance anode materials for lithium-ion batteries. Chemical Engineering Journal, 2018, 335, 579-589.	6.6	191
4	Carbon-incorporated Janus-type Ni ₂ P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 19054-19061.	5.2	183
5	Design of pomegranate-like clusters with NiS ₂ nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance. Journal of Materials Chemistry A, 2018, 6, 6595-6605.	5.2	159
6	Improved sodium-ion storage performance of Ti ₃ C ₂ T _x MXenes by sulfur doping. Journal of Materials Chemistry A, 2018, 6, 1234-1243.	5.2	158
7	High performance capacitive deionization electrodes based on ultrathin nitrogen-doped carbon/graphene nano-sandwiches. Chemical Communications, 2017, 53, 10784-10787.	2.2	105
8	Porphyrinic MOF Film for Multifaceted Electrochemical Sensing. Angewandte Chemie - International Edition, 2021, 60, 20551-20557.	7.2	105
9	In situ growth of Sb2S3 on multiwalled carbon nanotubes as high-performance anode materials for sodium-ion batteries. Electrochimica Acta, 2017, 228, 436-446.	2.6	99
10	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5837-5843.	7.2	99
11	Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization. Chemical Engineering Journal, 2018, 337, 398-404.	6.6	79
12	Facile dual doping strategy <i>via</i> carbonization of covalent organic frameworks to prepare hierarchically porous carbon spheres for membrane capacitive deionization. Chemical Communications, 2018, 54, 14009-14012.	2.2	74
13	Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271, 591-598.	2.6	70
14	Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel–Iron Clusters. Angewandte Chemie - International Edition, 2020, 59, 10934-10938.	7.2	70
15	Metal-organic frameworks converted flower-like hybrid with Co3O4 nanoparticles decorated on nitrogen-doped carbon sheets for boosted lithium storage performance. Chemical Engineering Journal, 2018, 354, 172-181.	6.6	68
16	Synthesis of bimetallic NixCo1-xP hollow nanocages from metal-organic frameworks for high performance hybrid supercapacitors. Electrochimica Acta, 2018, 285, 192-201.	2.6	67
17	Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor. Journal of Alloys and Compounds, 2020, 822, 153578.	2.8	45
18	NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 785-795.	1.2	43

Shujin Hou

#	Article	IF	CITATIONS
19	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
20	Capacitive neutralization deionization with flow electrodes. Electrochimica Acta, 2016, 216, 211-218.	2.6	34
21	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34
22	TiO ₂ nanocrystals embedded in sulfur-doped porous carbon as high-performance and long-lasting anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 24224-24231.	5.2	25
23	Nitrogen-doped carbon spheres: A new high-energy-density and long-life pseudo-capacitive electrode material for electrochemical flow capacitor. Journal of Colloid and Interface Science, 2017, 491, 161-166.	5.0	20
24	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 5886-5892.	1.6	16
25	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
26	Key Factors for Templateâ€Oriented Porous Titania Synthesis: Solvents and Catalysts. Small Methods, 2020, 4, 1900689.	4.6	14
27	A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3433-3456.	1.7	13
28	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Đerived Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	12
29	AktivitÃæsteigerung der Wasserstoffentwicklung von Platinelektroden in alkalischen Medien unter Verwendung von Niâ€Feâ€Clustern. Angewandte Chemie, 2020, 132, 11026-11031.	1.6	8
30	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	7
31	Elucidation of Structure–Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. Small, 2022, 18, .	5.2	7
32	Prospects of Using the Laserâ€Induced Temperature Jump Techniques for Characterisation of Electrochemical Systems. ChemElectroChem, 0, , .	1.7	1
33	Titania Thin Films: Key Factors for Templateâ€Oriented Porous Titania Synthesis: Solvents and Catalysts (Small Methods 3/2020). Small Methods, 2020, 4, 2070012.	4.6	0
34	Cover Feature: Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts (ChemElectroChem 7/2022). ChemElectroChem, 2022, 9, .	1.7	0