
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
2	Association of Type and Location of <i>BRCA1</i> and <i>BRCA2</i> Mutations With Risk of Breast and Ovarian Cancer. JAMA - Journal of the American Medical Association, 2015, 313, 1347.	3.8	390
3	Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 2017, 49, 680-691.	9.4	356
4	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
5	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	9.4	265
6	Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature, 2014, 508, 98-102.	13.7	261
7	Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nature Genetics, 2015, 47, 164-171.	9.4	221
8	Targeted Prostate Cancer Screening in BRCA1 and BRCA2 Mutation Carriers: Results from the Initial Screening Round of the IMPACT Study. European Urology, 2014, 66, 489-499.	0.9	195
9	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	1.5	174
10	Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood, 2016, 127, 3026-3034.	0.6	168
11	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	7.7	157
12	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.4	153
13	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	9.4	125
14	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	9.4	120
15	Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood, 2014, 124, 2544-2553.	0.6	102
16	Germline Mutations in PALB2, BRCA1, and RAD51C, Which Regulate DNA Recombination Repair, in Patients With Gastric Cancer. Gastroenterology, 2017, 152, 983-986.e6.	0.6	98
17	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	5.8	93
18	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	5.8	90

#	Article	IF	CITATIONS
19	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	5.8	88
20	Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. The Lancet Gastroenterology and Hepatology, 2018, 3, 489-498.	3.7	87
21	Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants. Genetics in Medicine, 2020, 22, 1653-1666.	1.1	82
22	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	5.8	78
23	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	0.8	77
24	Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Medicine, 2016, 5, 1125-1136.	1.3	68
25	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	1.4	67
26	Cytogenetic clues to breast carcinogenesis. Genes Chromosomes and Cancer, 2002, 33, 1-16.	1.5	61
27	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	7.7	56
28	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	1.2	54
29	A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk. Cancer Research, 2018, 78, 5419-5430.	0.4	54
30	The c.156_157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Research and Treatment, 2009, 114, 31-38.	1.1	52
31	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	2.9	52
32	Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Human Molecular Genetics, 2015, 24, 1478-1492.	1.4	50
33	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	5.8	50
34	Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genetics, 2018, 14, e1007355.	1.5	50
35	Characterization of the Cancer Spectrum in Men With Germline <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variants. JAMA Oncology, 2020, 6, 1218.	3.4	48
36	DNA Glycosylases Involved in Base Excision Repair May Be Associated with Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS Genetics, 2014, 10, e1004256.	1.5	47

#	Article	IF	CITATIONS
37	Recurrent Fusion Oncogenes in Carcinomas. Critical Reviews in Oncogenesis, 2006, 12, 257-271.	0.2	45
38	Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Research, 2016, 18, 112.	2.2	42
39	Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Medicine, 2016, 14, 66.	2.3	42
40	Association of Genomic Domains in <i>BRCA1</i> and <i>BRCA2</i> with Prostate Cancer Risk and Aggressiveness. Cancer Research, 2020, 80, 624-638.	0.4	39
41	Hereditary Predisposition to Prostate Cancer: From Genetics to Clinical Implications. International Journal of Molecular Sciences, 2020, 21, 5036.	1.8	38
42	Multiple numerical chromosome aberrations in cancer: what are their causes and what are their consequences?. Seminars in Cancer Biology, 2005, 15, 3-12.	4.3	36
43	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	1.6	35
44	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	1.5	34
45	Assessing Associations between the AURKA-HMMR-TPX2-TUBG1 Functional Module and Breast Cancer Risk in BRCA1/2 Mutation Carriers. PLoS ONE, 2015, 10, e0120020.	1.1	34
46	Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients. PLoS ONE, 2015, 10, e0132728.	1.1	34
47	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	0.6	32
48	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	2.2	31
49	Target gene mutational pattern in Lynch syndrome colorectal carcinomas according to tumour location and germline mutation. British Journal of Cancer, 2015, 113, 686-692.	2.9	30
50	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	5.8	30
51	Genomic analysis of prostate carcinoma specimens obtained via ultrasound-guided needle biopsy may be of use in preoperative decision-making. Cancer, 2004, 101, 1786-1793.	2.0	28
52	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	2.3	28
53	International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation. Breast Cancer Research and Treatment, 2011, 127, 671-679.	1.1	27
54	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	1.1	27

#	Article	IF	CITATIONS
55	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	1.1	27
56	Assessing the role of insulinâ€like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. International Journal of Cancer, 2016, 139, 1520-1533.	2.3	26
57	The role of germline mutations in the BRCA1/2 and mismatch repair genes in men ascertained for early-onset and/or familial prostate cancer. Familial Cancer, 2016, 15, 111-121.	0.9	26
58	Pathogenicity Evaluation of BRCA1 and BRCA2 Unclassified Variants Identified in Portuguese Breast/Ovarian Cancer Families. Journal of Molecular Diagnostics, 2014, 16, 324-334.	1.2	24
59	Full in-frame exon 3 skipping of <i>BRCA2</i> confers high risk of breast and/or ovarian cancer. Oncotarget, 2018, 9, 17334-17348.	0.8	24
60	Specific and redundant activities of <i>ETV1</i> and <i>ETV4</i> in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget, 2015, 6, 5217-5236.	0.8	24
61	Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. British Journal of Cancer, 2016, 115, 624-631.	2.9	23
62	Implementation of next-generation sequencing for molecular diagnosis of hereditary breast and ovarian cancer highlights its genetic heterogeneity. Breast Cancer Research and Treatment, 2016, 159, 245-256.	1.1	23
63	Polygenic risk modeling for prediction of epithelial ovarian cancer risk. European Journal of Human Genetics, 2022, 30, 349-362.	1.4	23
64	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	1.1	22
65	Cytogenetic Analysis of Tumor Clonality. Advances in Cancer Research, 2011, 112, 127-149.	1.9	21
66	Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. British Journal of Cancer, 2019, 121, 180-192.	2.9	19
67	Breast and Prostate Cancer Risks for Male <i>BRCA1</i> and <i>BRCA2</i> Pathogenic Variant Carriers Using Polygenic Risk Scores. Journal of the National Cancer Institute, 2022, 114, 109-122.	3.0	19
68	Carcinoma of the Thyroid With Ewing/PNET Family Tumor Elements. International Journal of Surgical Pathology, 2014, 22, 579-581.	0.4	18
69	Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3. Breast Cancer Research and Treatment, 2017, 161, 117-134.	1.1	18
70	Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. International Journal of Cancer, 2017, 140, 322-328.	2.3	17
71	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	1.7	16
72	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	1.1	16

MARTA CARDOSO

#	Article	IF	CITATIONS
73	Analysis of Founder Mutations in Rare Tumors Associated With Hereditary Breast/Ovarian Cancer Reveals a Novel Association of BRCA2 Mutations with Ampulla of Vater Carcinomas. PLoS ONE, 2016, 11, e0161438.	1.1	15
74	Discontinuation of tyrosine kinase inhibitors in CML patients in real-world clinical practice at a single institution. BMC Cancer, 2018, 18, 1245.	1.1	15
75	Validation of a Next-Generation Sequencing Pipeline for the Molecular Diagnosis of Multiple Inherited Cancer Predisposing Syndromes. Journal of Molecular Diagnostics, 2017, 19, 502-513.	1.2	13
76	Prostate Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG. Translational Oncology, 2016, 9, 575-582.	1.7	12
77	Prostate-specific antigen velocity in a prospective prostate cancer screening study of men with genetic predisposition. British Journal of Cancer, 2018, 118, 266-276.	2.9	12
78	Identification of previously unrecognized FAP in children with Gardner fibroma. European Journal of Human Genetics, 2015, 23, 715-718.	1.4	11
79	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	1.8	11
80	Ponatinib induces a sustained deep molecular response in a chronic myeloid leukaemia patient with an early relapse with a T315I mutation following allogeneic hematopoietic stem cell transplantation: a case report. BMC Cancer, 2018, 18, 1229.	1.1	11
81	Tumor Testing for Somatic and Germline BRCA1/BRCA2 Variants in Ovarian Cancer Patients in the Context of Strong Founder Effects. Frontiers in Oncology, 2020, 10, 1318.	1.3	11
82	Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements. Oncoscience, 2015, 2, 497-507.	0.9	11
83	Portuguese c.156_157insAlu BRCA2 founder mutation: gastrointestinal and tongue neoplasias may be part of the phenotype. Familial Cancer, 2012, 11, 657-660.	0.9	10
84	Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. PLoS ONE, 2016, 11, e0158801.	1.1	10
85	Haplotype analysis of the internationally distributed BRCA1 c.3331_3334delCAAG founder mutation reveals a common ancestral origin in Iberia. Breast Cancer Research, 2020, 22, 108.	2.2	9
86	Prostate cancer risk regions at 8q24 and 17q24 are differentially associated with somatic <i>TMPRSS2:ERG</i> fusion status. Human Molecular Genetics, 2016, 25, ddw349.	1.4	8
87	Co-occurrence of nonsense mutations in MSH6 and MSH2 in Lynch syndrome families evidencing that not all truncating mutations are equal. Journal of Human Genetics, 2016, 61, 151-156.	1.1	8
88	Screening and characterization of BRCA2 c.156_157insAlu in Brazil: Results from 1380 individuals from the South and Southeast. Cancer Genetics, 2018, 228-229, 93-97.	0.2	6
89	Karyotypic divergence and convergence in two synchronous lung metastases of a clear cell sarcoma of tendons and aponeuroses with t(12;22)(q13;q12) and type 1 EWS/ATF1. Cancer Genetics and Cytogenetics, 2003, 145, 121-125.	1.0	5
90	Association of germline variation with the survival of women with BRCA1/2 pathogenic variants and breast cancer. Npj Breast Cancer, 2020, 6, 44.	2.3	5

MARTA CARDOSO

#	ARTICLE	IF	CITATIONS
91	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	1.8	3
92	Overexpression of the Mitotic Checkpoint Genes <i>BUB1</i> and <i>BUBR1</i> is Associated with Genomic Complexity in Clear Cell Kidney Carcinomas. Analytical Cellular Pathology, 2008, 30, 389-395.	0.7	3
93	Multi-Gene Panel Testing in Gastroenterology: Are We Ready for the Results?. GE Portuguese Journal of Gastroenterology, 2021, 28, 1-7.	0.3	2
94	Pathogenicity reclassification of two BRCA1/BRCA2 exonic duplications after identification of genomic breakpoints and tandem orientation. Cancer Genetics, 2020, 248-249, 18-24.	0.2	0
95	Genetic and Clinical Characterization of 45 Acute Leukemia Patients with MLL Gene Rearrangements From a Single Institution Blood, 2012, 120, 2477-2477.	0.6	0
96	Prognostic Impact of High Hematogones in Acute Myeloid Leukemia. Blood, 2012, 120, 1435-1435.	0.6	0