John D Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4135082/publications.pdf

Version: 2024-02-01

54 papers 4,098 citations

31 h-index

147726

53 g-index

56 all docs

56 docs citations

56 times ranked 5654 citing authors

#	Article	IF	CITATIONS
1	Insectivorous birds reduce herbivory but do not increase mangrove growth across productivity zones. Ecology, 2022, 103, .	1.5	1
2	Variability in the fundamental versus realized niches of North American mangroves. Journal of Biogeography, 2021, 48, 160-175.	1.4	22
3	Low humidity and hypersalinity reduce cold tolerance in mangroves. Estuarine, Coastal and Shelf Science, 2021, 248, 107015.	0.9	19
4	Chemical Similarity of Co-occurring Trees Decreases With Precipitation and Temperature in North American Forests. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	13
5	Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species. Ecology and Evolution, 2020, 10, 8770-8792.	0.8	15
6	Tree diversity promotes growth of late successional species despite increasing deer damage in a restored forest. Ecology, 2020, 101, e03063.	1.5	7
7	Climate-driven regime shifts in a mangrove–salt marsh ecotone over the past 250 years. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21602-21608.	3.3	127
8	Tree Diversity Reduces Fungal Endophyte Richness and Diversity in a Large-Scale Temperate Forest Experiment. Diversity, 2019, 11, 234.	0.7	16
9	Synthesis and future research directions linking tree diversity to growth, survival, and damage in a global network of tree diversity experiments. Environmental and Experimental Botany, 2018, 152, 68-89.	2.0	113
10	A regional assessment of white-tailed deer effects on plant invasion. AoB PLANTS, 2018, 10, plx047.	1.2	42
11	Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology, 2018, 99, 2647-2653.	1.5	44
12	Sensitivity of mangrove range limits to climate variability. Global Ecology and Biogeography, 2018, 27, 925-935.	2.7	68
13	Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory. Ecology, 2017, 98, 1817-1828.	1.5	34
14	Mangrove microclimates alter seedling dynamics at the range edge. Ecology, 2017, 98, 2513-2520.	1.5	49
15	Recent advances in plant-herbivore interactions. F1000Research, 2017, 6, 119.	0.8	42
16	Insect herbivores increase mortality and reduce tree seedling growth of some species in temperate forest canopy gaps. Peerl, 2017, 5, e3102.	0.9	9
17	Quantifying Differences Between Native and Introduced Species. Trends in Ecology and Evolution, 2016, 31, 372-381.	4.2	26
18	Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio, 2016, 45, 29-41.	2.8	203

#	Article	IF	Citations
19	Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots. Scientific Reports, 2015, 5, 15127.	1.6	23
20	Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion. Global Change Biology, 2015, 21, 1928-1938.	4.2	111
21	Phylogenetic relatedness and leaf functional traits, not introduced status, influence community assembly. Ecology, 2015, 96, 2605-2612.	1.5	28
22	Convergence of three mangrove species towards freezeâ€tolerant phenotypes at an expanding range edge. Functional Ecology, 2015, 29, 1332-1340.	1.7	61
23	Effects of <i>in situ </i> climate warming on monarch caterpillar (<i>Danaus plexippus </i>) development. PeerJ, 2015, 3, e1293.	0.9	9
24	Deer Browsing Delays Succession by Altering Aboveground Vegetation and Belowground Seed Banks. PLoS ONE, 2014, 9, e91155.	1.1	40
25	Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach. Frontiers in Genetics, 2014, 5, 358.	1.1	71
26	Reply to Giri and Long: Freeze-mediated expansion of mangroves does not depend on whether expansion is emergence or reemergence. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1449-E1449.	3.3	4
27	Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 723-727.	3.3	431
28	Record Northernmost Endemic Mangroves on the United States Atlantic Coast with a Note on Latitudinal Migration. Southeastern Naturalist, 2014, 13, 56-63.	0.2	47
29	Positive interactions between herbivores and plant diversity shape forest regeneration. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140261.	1.2	37
30	Ancient experiments: forest biodiversity and soil nutrients enhanced by Native American middens. Landscape Ecology, 2014, 29, 979-987.	1.9	26
31	Variable effects of temperature on insect herbivory. PeerJ, 2014, 2, e376.	0.9	104
32	Cascading effects of a highly specialized beech-aphid–fungus interaction on forest regeneration. PeerJ, 2014, 2, e442.	0.9	4
33	Increased temperature alters feeding behavior of a generalist herbivore. Oikos, 2013, 122, 1669-1678.	1.2	76
34	Do invasive species perform better in their new ranges?. Ecology, 2013, 94, 985-994.	1.5	210
35	White-Tailed Deer Alter Specialist and Generalist Insect Herbivory Through Plant Traits. Environmental Entomology, 2012, 41, 1409-1416.	0.7	22
36	Evolutionary Potential of Root Chemical Defense: Genetic Correlations with Shoot Chemistry and Plant Growth. Journal of Chemical Ecology, 2012, 38, 992-995.	0.9	22

#	Article	IF	Citations
37	Phylogenetic isolation increases plant success despite increasing susceptibility to generalist herbivores. Diversity and Distributions, 2012, 18, 1-9.	1.9	39
38	Land use history alters the relationship between native and exotic plants: the rich don't always get richer. Biological Invasions, 2010, 12, 1557-1571.	1.2	44
39	First evidence of hexameric and heptameric ellagitannins in plants detected by liquid chromatography/electrospray ionisation mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 3151-3156.	0.7	38
40	Herbivory enhances positive effects of plant genotypic diversity. Ecology Letters, 2010, 13, 553-563.	3.0	57
41	Novel Weapons Testing: Are Invasive Plants More Chemically Defended than Native Plants?. PLoS ONE, 2010, 5, e10429.	1.1	58
42	A specialist detritivore links Spartina alterniflora to salt marsh food webs. Marine Ecology - Progress Series, 2008, 364, 87-95.	0.9	20
43	Stream mosses as chemicallyâ€defended refugia for freshwater macroinvertebrates. Oikos, 2007, 116, 302-312.	1.2	50
44	Beaver herbivory on aquatic plants. Oecologia, 2007, 151, 616-625.	0.9	61
45	Opposing Effects of Native and Exotic Herbivores on Plant Invasions. Science, 2006, 311, 1459-1461.	6.0	515
46	Chemical Defenses Promote Persistence of the Aquatic Plant Micranthemum umbrosum. Journal of Chemical Ecology, 2006, 32, 815-833.	0.9	21
47	Response to Comment on "Opposing Effects of Native and Exotic Herbivores on Plant Invasions". Science, 2006, 313, 298b-298b.	6.0	10
48	CHEMICALLY MEDIATED COMPETITION BETWEEN MICROBES AND ANIMALS: MICROBES AS CONSUMERS IN FOOD WEBS. Ecology, 2006, 87, 2821-2831.	1.5	138
49	Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecology Letters, 2005, 8, 959-967.	3.0	266
50	Mutualisms and Aquatic Community Structure: The Enemy of My Enemy Is My Friend. Annual Review of Ecology, Evolution, and Systematics, 2004, 35, 175-197.	3.8	167
51	GRAZER DIVERSITY, FUNCTIONAL REDUNDANCY, AND PRODUCTIVITY IN SEAGRASS BEDS: AN EXPERIMENTAL TEST. Ecology, 2001, 82, 2417-2434.	1.5	222
52	Grazer Diversity, Functional Redundancy, and Productivity in Seagrass Beds: An Experimental Test. Ecology, 2001, 82, 2417.	1.5	10
53	Plant species diversity and composition: experimental effects on marine epifaunal assemblages. Marine Ecology - Progress Series, 2001, 224, 55-67.	0.9	142
54	Quantifying the invasiveness of species. NeoBiota, 0, 21, 7-27.	1.0	63