
Ernst K Huenges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4134940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophysical Journal International, 1997, 131, F15-F18.	1.0	446
2	Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone–proppant systems. Chemie Der Erde, 2010, 70, 107-117.	0.8	175
3	Hydraulic fracturing in a sedimentary geothermal reservoir: Results and implications. International Journal of Rock Mechanics and Minings Sciences, 2005, 42, 1028-1041.	2.6	152
4	Utilizing supercritical geothermal systems: a review of past ventures and ongoing research activities. Geothermal Energy, 2017, 5, .	0.9	127
5	The thermal regime of the crystalline continental crust: Implications from the KTB. Journal of Geophysical Research, 1997, 102, 18417-18441.	3.3	123
6	KTB and the electrical conductivity of the crust. Journal of Geophysical Research, 1997, 102, 18289-18305.	3.3	96
7	First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea. Geophysical Journal International, 2019, 217, 926-949.	1.0	90
8	Geochemical properties of saline geothermal fluids from the in-situ geothermal laboratory Groß Schönebeck (Germany). Chemie Der Erde, 2010, 70, 3-12.	0.8	69
9	Hydraulic history and current state of the deep geothermal reservoir Groß Schönebeck. Geothermics, 2016, 63, 27-43.	1.5	63
10	Modelling of fractured carbonate reservoirs: outline of a novel technique via a case study from the Molasse Basin, southern Bavaria, Germany. Environmental Earth Sciences, 2013, 70, 3585-3602.	1.3	61
11	Thermal properties of gneisses and amphibolites — high pressure and high temperature investigations of KTB-rock samples. Tectonophysics, 1998, 291, 173-178.	0.9	43
12	Pressure-dependent Production Efficiency of an Enhanced Geothermal System (EGS): Stimulation Results and Implications for Hydraulic Fracture Treatments. Pure and Applied Geophysics, 2009, 166, 1089-1106.	0.8	42
13	Microseismicity induced during fluid-injection: A case study from the geothermal site at Groß Schönebeck, North German Basin. Acta Geophysica, 2010, 58, 995-1020.	1.0	42
14	Poroelastic behaviour of physical properties in Rotliegend sandstones under uniaxial strain. International Journal of Rock Mechanics and Minings Sciences, 2005, 42, 924-932.	2.6	36
15	Geothermal energy systems: research perspective for domestic energy provision. Environmental Earth Sciences, 2013, 70, 3927-3933.	1.3	35
16	Geochemical and Process Engineering Challenges for Geothermal Power Generation. Chemie-Ingenieur-Technik, 2011, 83, 2093-2104.	0.4	34
17	Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 2013, 70, 3545-3566.	1.3	32
18	Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the GroAY SchA¶nebeck reservoir Tectonophysics 2016 684 119-130	0.9	29

Ernst K Huenges

#	Article	IF	CITATIONS
19	The Impact of Reservoir Heterogeneities on High-Temperature Aquifer Thermal Energy Storage Systems. A Case Study from Northern Oman Geothermics, 2018, 74, 150-162.	1.5	23
20	Physical parameters measured on cores and cuttings from the pilot well (0 m–4000.1 m) of the German continental deep drilling program (KTB) in the Oberfalz area, Bavaria, Federal Republic of Germany. Surveys in Geophysics, 1992, 13, 1-34.	2.1	17
21	Experimental study on dehydration melting of natural biotite-plagioclase gneiss from High Himalayas and implications for Himalayan crust anatexis. Science Bulletin, 2001, 46, 867-871.	1.7	17
22	Geothermal Energy: a glimpse at the state of the field and an introduction to the journal. Geothermal Energy, 2013, 1, .	0.9	17
23	Mechanically Induced Fracture-Face Skin—Insights From Laboratory Testing and Modeling Approaches. SPE Production and Operations, 2013, 28, 26-35.	0.4	16
24	Stimulation experiments in sedimentary, low-enthalpy reservoirs for geothermal power generation, Germany. Geothermics, 2003, 32, 487-495.	1.5	15
25	Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck. Pure and Applied Geophysics, 2006, 163, 2141-2152.	0.8	14
26	Role of sulfur and carbon in the electrical conductivity of the middle crust. Journal of Geophysical Research, 1998, 103, 9681-9689.	3.3	13
27	The deep geothermal potential of the Berlin area. Environmental Earth Sciences, 2013, 70, 3567-3584.	1.3	13
28	Thermo-mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions. Rock Mechanics and Rock Engineering, 2018, 51, 23-45.	2.6	13
29	3-D seismic exploration across the deep geothermal research platform Groß Schönebeck north of Berlin/Germany. Geothermal Energy, 2019, 7, .	0.9	13
30	The heat transfer in the region of the Mauna Kea (Hawaii)—constraints from borehole temperature measurements and coupled thermo-hydraulic modeling. Tectonophysics, 2003, 371, 23-40.	0.9	12
31	Estimation of hydraulic parameters after stimulation experiments in the geothermal reservoir Groß Schönebeck 3/90 (North-German Basin). International Journal of Rock Mechanics and Minings Sciences, 2005, 42, 1082-1087.	2.6	12
32	Thermal strain in a water-saturated limestone under hydrostatic and deviatoric stress states. Tectonophysics, 2016, 688, 49-64.	0.9	12
33	Geothermal exploration in a sedimentary basin: new continuous temperature data and physical rock properties from northern Oman. Geothermal Energy, 2018, 6, .	0.9	12
34	Seismic velocity, density, thermal conductivity and heat production of cores from the KTB Pilot Hole. Geophysical Research Letters, 1997, 24, 345-348.	1.5	11
35	Genesis of granulite in Himalayan lower crust: Evidence from experimental study at high temperature and high pressure. Science Bulletin, 2002, 47, 448.	1.7	8
36	Factors controlling the variances of seismic velocity, density, thermal conductivity and heat production of cores from the KTB Pilot Hole. Geophysical Research Letters, 1997, 24, 341-344.	1.5	7

Ernst K Huenges

#	Article	IF	CITATIONS
37	Alteration of seismic wave properties and fluid permeability in sandstones due to microfracturing. Physics and Chemistry of the Earth, 2000, 25, 141-147.	0.6	7
38	Investigation of the undrained poroelastic response of sandstones to confining pressure via laboratory experiment, numerical simulation and analytical calculation. Geological Society Special Publication, 2007, 284, 71-87.	0.8	7
39	Geoenergy: new concepts for utilization of geo-reservoirs as potential energy sources. Environmental Earth Sciences, 2013, 70, 3427-3431.	1.3	7
40	Reverse Cleanout in a Geothermal Well: Analysis of a Failed Coiled-Tubing Operation. SPE Production and Operations, 2015, 30, 312-320.	0.4	7
41	Pressure dependence of permeability and Earth tide induced fluid flow. Geophysical Research Letters, 1998, 25, 809-812.	1.5	6
42	Soft stimulation treatment of geothermal well RV-43 to meet the growing heat demand of Reykjavik. Geothermics, 2021, 96, 102146.	1.5	5
43	Pressure-dependent Production Efficiency of an Enhanced Geothermal System (ECS): Stimulation Results and Implications for Hydraulic Fracture Treatments. , 2009, , 1089-1106.		5
44	Response of Upper Jurassic (Malm) Limestone to Temperature Change: Experimental Results on Rock Deformation and Permeability. Rock Mechanics and Rock Engineering, 2021, 54, 337-358.	2.6	4
45	Seismic Detection Limits of Small, Deep, Man-Made Reflectors: A Test at a Geothermal Site in Northern Germany. Bulletin of the Seismological Society of America, 2005, 95, 1567-1573.	1.1	3
46	Temperatureâ€dependent fluid substitution analysis of geothermal rocks at inâ€situ reservoir conditions. , 2008, , .		2
47	Deployment of Enhanced Geothermal Systems Plants and CO2 Mitigation. , 2010, , 423-428.		1
48	News and analysis on materials solutions to energy challenges. MRS Bulletin, 2015, 40, 213-213.	1.7	1
49	The new Geothermal Energy: Science, Society, and Technology. Geothermal Energy, 2017, 5, .	0.9	1
50	Fluid Pressure Variation in a Sedimentary Geothermal Reservoir in the North German Basin: Case Study Groß Schönebeck. , 2006, , 2141-2152.		1
51	Balanced Reverse-Cleanout Operation: Removing Large and Heavy Particles From a Geothermal Well. SPE Production and Operations, 2017, 32, 228-237.	0.4	0