Alejandra BermÃdez-Oria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4134892/publications.pdf

Version: 2024-02-01

686830 642321 27 544 13 23 g-index citations h-index papers 27 27 27 657 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 2019, 148, 213-218.	2.7	90
2	Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chemistry, 2019, 280, 310-320.	4.2	62
3	Physical and functional properties of pectin-fish gelatin films containing the olive phenols hydroxytyrosol and 3,4-dihydroxyphenylglycol. Carbohydrate Polymers, 2017, 178, 368-377.	5.1	55
4	Cocoa bean husk: industrial source of antioxidant phenolic extract. Journal of the Science of Food and Agriculture, 2019, 99, 325-333.	1.7	40
5	Molecular interactions between 3,4-dihydroxyphenylglycol and pectin and antioxidant capacity of this complex in vitro. Carbohydrate Polymers, 2018, 197, 260-268.	5.1	27
6	The use of industrial thermal techniques to improve the bioactive compounds extraction and the olive oil solid waste utilization. Innovative Food Science and Emerging Technologies, 2019, 55, 11-17.	2.7	27
7	Complexation of hydroxytyrosol and 3,4-dihydroxyphenylglycol with pectin and their potential use for colon targeting. Carbohydrate Polymers, 2017, 163, 292-300.	5.1	25
8	Pectin-rich extracts from olives inhibit proliferation of Caco-2 and THP-1 cells. Food and Function, 2019, 10, 4844-4853.	2.1	22
9	Anti-Inflammatory and Antioxidant Activity of Hydroxytyrosol and 3,4-Dihydroxyphenyglycol Purified from Table Olive Effluents. Foods, 2021, 10, 227.	1.9	21
10	Confirmation by solid-state NMR spectroscopy of a strong complex phenol-dietary fiber with retention of antioxidant activity in vitro. Food Hydrocolloids, 2020, 102, 105584.	5.6	19
11	Polyphenols associated to pectic polysaccharides account for most of the antiproliferative and antioxidant activities in olive extracts. Journal of Functional Foods, 2019, 62, 103530.	1.6	16
12	Antiproliferative Activity of Olive Extract Rich in Polyphenols and Modified Pectin on Bladder Cancer Cells. Journal of Medicinal Food, 2020, 23, 719-727.	0.8	15
13	Deep eutectic solvents improve the biorefinery of alperujo by extraction of bioactive molecules in combination with industrial thermal treatments. Food and Bioproducts Processing, 2020, 121, 131-142.	1.8	14
14	Anti-Inflammatory Local Effect of Hydroxytyrosol Combined with Pectin-Alginate and Olive Oil on Trinitrobenzene Sulfonic Acid-Induced Colitis in Wistar Rats. Journal of Investigative Surgery, 2020, 33, 8-14.	0.6	13
15	New Liquid Source of Antioxidant Phenolic Compounds in the Olive Oil Industry: Alperujo Water. Foods, 2020, 9, 962.	1.9	13
16	Antioxidant Capacity and Phenolic and Sugar Profiles of Date Fruits Extracts from Six Different Algerian Cultivars as Influenced by Ripening Stages and Extraction Systems. Foods, 2021, 10, 503.	1.9	12
17	Effect of oliveâ€derived antioxidants (3,4â€dihydroxyphenylethanol and 3,4 dihydroxyphenylglycol) on sperm motility and fertility in liquid ram sperm stored at 15°C or 5°C. Reproduction in Domestic Animals, 2020, 55, 325-332.	0.6	9
18	Bayesian Analysis of the Effects of Olive Oil-Derived Antioxidants on Cryopreserved Buck Sperm Parameters. Animals, 2021, 11, 2032.	1.0	9

#	Article	IF	CITATIONS
19	Effect of the Olive Oil Extraction Process on the Formation of Complex Pectin–Polyphenols and Their Antioxidant and Antiproliferative Activities. Antioxidants, 2021, 10, 1858.	2.2	9
20	Viability of near infrared spectroscopy for a rapid analysis of the bioactive compounds in intact cocoa bean husk. Food Control, 2021, 120, 107526.	2.8	8
21	Extra Virgin Oil Polyphenols Improve the Protective Effects of Hydroxytyrosol in an In Vitro Model of Hypoxia-Reoxygenation of Rat Brain. Brain Sciences, 2021, 11, 1133.	1.1	7
22	Synergistic effect of 3,4-dihydroxyphenylglycol with hydroxytyrosol and \hat{l}_{\pm} -tocopherol on the Rancimat oxidative stability of vegetable oils. Innovative Food Science and Emerging Technologies, 2019, 51, 100-106.	2.7	6
23	Strawberry Puree Functionalized with Natural Hydroxytyrosol: Effects on Vitamin C and Antioxidant Activity. Molecules, 2020, 25, 5829.	1.7	6
24	Nephroprotective Effect of the Virgin Olive Oil Polyphenol Hydroxytyrosol in Type 1-like Experimental Diabetes Mellitus: Relationships with Its Antioxidant Effect. Antioxidants, 2021, 10, 1783.	2.2	6
25	Synergistic Effect of $3\hat{a}\in^2$, $4\hat{a}\in^2$ -Dihidroxifenilglicol and Hydroxytyrosol on Oxidative and Nitrosative Stress and Some Cardiovascular Biomarkers in an Experimental Model of Type 1 Diabetes Mellitus. Antioxidants, 2021, 10, 1983.	2.2	5
26	Inhibitory Effect of Olive Phenolic Compounds Isolated from Olive Oil By-Product on Melanosis of Shrimps. Antioxidants, 2021, 10, 728.	2.2	4
27	Neuroprotective Effect of 3′,4′-Dihydroxyphenylglycol in Type-1-like Diabetic Rats—Influence of the Hydroxytyrosol/3′,4′-dihydroxyphenylglycol Ratio. Nutrients, 2022, 14, 1146.	1.7	4