Marisa W Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4134235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A large electronic-health-record-based genome-wide study of serum lipids. Nature Genetics, 2018, 50, 401-413.	21.4	224
2	A statin-dependent QTL for GATM expression is associated with statin-induced myopathy. Nature, 2013, 502, 377-380.	27.8	197
3	Variation in the 3-Hydroxyl-3-Methylglutaryl Coenzyme A Reductase Gene Is Associated With Racial Differences in Low-Density Lipoprotein Cholesterol Response to Simvastatin Treatment. Circulation, 2008, 117, 1537-1544.	1.6	144
4	Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake. PLoS ONE, 2011, 6, e19420.	2.5	55
5	HNRNPA1 regulates HMGCR alternative splicing and modulates cellular cholesterol metabolism. Human Molecular Genetics, 2014, 23, 319-332.	2.9	53
6	Human genetic variation in <i>VAC14</i> regulates <i>Salmonella</i> invasion and typhoid fever through modulation of cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7746-E7755.	7.1	46
7	The Role of HMGCR Alternative Splicing in Statin Efficacy. Trends in Cardiovascular Medicine, 2009, 19, 173-177.	4.9	45
8	CATM Polymorphism Associated with the Risk for Statin-Induced Myopathy Does Not Replicate in Case-Control Analysis of 715 Dyslipidemic Individuals. Cell Metabolism, 2015, 21, 622-627.	16.2	34
9	RHOA Is a Modulator of the Cholesterol-Lowering Effects of Statin. PLoS Genetics, 2012, 8, e1003058.	3.5	32
10	A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Human Molecular Genetics, 2013, 22, 1424-1431.	2.9	30
11	The impact of adjusting for baseline in pharmacogenomic genome-wide association studies of quantitative change. Npj Genomic Medicine, 2020, 5, 1.	3.8	28
12	Genome-wide association and pharmacological profiling of 29 anticancer agents using lymphoblastoid cell lines. Pharmacogenomics, 2014, 15, 137-146.	1.3	27
13	RP1-13D10.2 Is a Novel Modulator of Statin-Induced Changes in Cholesterol. Circulation: Cardiovascular Genetics, 2016, 9, 223-230.	5.1	27
14	Prediction of LDL cholesterol response to statin using transcriptomic and genetic variation. Genome Biology, 2014, 15, 460.	8.8	26
15	Characterization of Statin Low-Density Lipoprotein Cholesterol Dose-Response Using Electronic Health Records in a Large Population-Based Cohort. Circulation Genomic and Precision Medicine, 2018, 11, e002043.	3.6	25
16	Alternative splicing in the regulation of cholesterol homeostasis. Current Opinion in Lipidology, 2013, 24, 147-152.	2.7	24
17	Individual and Combined Associations of Genetic Variants in CYP3A4, CYP3A5, and SLCO1B1 With Simvastatin and Simvastatin Acid Plasma Concentrations. Journal of Cardiovascular Pharmacology, 2015, 66, 80-85.	1.9	23
18	Transmembrane Protein 55B Is a Novel Regulator of Cellular Cholesterol Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1917-1923.	2.4	19

MARISA W MEDINA

#	Article	IF	CITATIONS
19	SUGP1 is a novel regulator of cholesterol metabolism. Human Molecular Genetics, 2016, 25, ddw151.	2.9	18
20	Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Research, 2019, 37, 101434.	0.7	18
21	The relationship between HMGCR genetic variation, alternative splicing, and statin efficacy. Discovery Medicine, 2010, 9, 495-9.	0.5	18
22	A unified framework identifies new links between plasma lipids and diseases from electronic medical records across large-scale cohorts. Nature Genetics, 2021, 53, 972-981.	21.4	17
23	Genetic variants modulate gene expression statin response in human lymphoblastoid cell lines. BMC Genomics, 2020, 21, 555.	2.8	15
24	Statin-induced changes in gene expression in EBV-transformed and native B-cells. Human Molecular Genetics, 2014, 23, 1202-1210.	2.9	14
25	Effect of <i>SLCO1B1 T521C</i> on Statinâ€Related Myotoxicity With Use of Lovastatin and Atorvastatin. Clinical Pharmacology and Therapeutics, 2021, 110, 733-740.	4.7	14
26	Ancestry and other genetic associations with plasma PCSK9 response to simvastatin. Pharmacogenetics and Genomics, 2014, 24, 492-500.	1.5	13
27	ATHENA: A TOOL FOR META-DIMENSIONAL ANALYSIS APPLIED TO GENOTYPES AND GENE EXPRESSION DATA TO PREDICT HDL CHOLESTEROL LEVELS. , 2012, , .		12
28	ZNF542P is a pseudogene associated with LDL response to simvastatin treatment. Scientific Reports, 2018, 8, 12443.	3.3	10
29	Generalized correlation measure using count statistics for gene expression data with ordered samples. Bioinformatics, 2018, 34, 617-624.	4.1	9
30	Phosphatidylinositol-(4,5)-Bisphosphate Regulates Plasma Cholesterol Through LDL (Low-Density) Tj ETQq0 0 0 r 2020, 40, 1311-1324.	gBT /Over 2.4	lock 10 Tf 50 9
31	A gene–diet interaction controlling relative intake of dietary carbohydrates and fats. Molecular Metabolism, 2022, 58, 101442.	6.5	7
32	GeneFishing to reconstruct context specific portraits of biological processes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18943-18950.	7.1	6
33	Doxycycline Significantly Enhances Induction of Induced Pluripotent Stem Cells to Endoderm by Enhancing Survival Through Protein Kinase B Phosphorylation. Hepatology, 2021, 74, 2102-2117.	7.3	5
34	Identifying genetic modulators of statin response using subject-derived lymphoblastoid cell lines. Pharmacogenomics, 2021, 22, 413-421.	1.3	1
35	Undifferentiated Induced Pluripotent Stem Cells as a Genetic Model for Nonalcoholic Fatty Liver Disease. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 1174-1176.e6.	4.5	1
36	Validation of Electronic Health Records for the Assessment of Statin Dosing In Research. Journal of Clinical Lipidology, 2017, 11, 836-837.	1.5	0