
Pengfu Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4134224/publications.pdf Version: 2024-02-01

DENCEU HOU

#	Article	IF	CITATIONS
1	How does biochar aging affect NH3 volatilization and GHGs emissions from agricultural soils?. Environmental Pollution, 2022, 294, 118598.	7.5	36
2	Continuous milk vetch amendment in rice-fallow rotation improves soil fertility and maintains rice yield without increasing CH4 emissions: Evidence from a long-term experiment. Agriculture, Ecosystems and Environment, 2022, 325, 107774.	5.3	16
3	Warming increase the N2O emissions from wheat fields but reduce the wheat yield in a rice-wheat rotation system. Agriculture, Ecosystems and Environment, 2022, 337, 108064.	5.3	4
4	Green Manure Amendment in Paddies Improves Soil Carbon Sequestration but Cannot Substitute the Critical Role of N Fertilizer in Rice Production. Agronomy, 2022, 12, 1548.	3.0	4
5	Raw material of water-washed hydrochar was critical for the mitigation of GHGI in infertile paddy soil: a column experiment. Biochar, 2021, 3, 381-390.	12.6	13
6	Predicting the Ratio of Nitrification to Immobilization to Reflect the Potential Risk of Nitrogen Loss Worldwide. Environmental Science & Technology, 2021, 55, 7721-7730.	10.0	14
7	Deep fertilization with controlledâ€release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth. Agronomy Journal, 2021, 113, 5027-5039.	1.8	14
8	Nutrient loss by runoff from rice-wheat rotation during the wheat season is dictated by rainfall duration. Environmental Pollution, 2021, 285, 117382.	7.5	19
9	Effect of fertilization on nitrogen losses through surface runoffs in Chinese farmlands: A meta-analysis. Science of the Total Environment, 2021, 793, 148554.	8.0	28
10	Win-win: Application of sawdust-derived hydrochar in low fertility soil improves rice yield and reduces greenhouse gas emissions from agricultural ecosystems. Science of the Total Environment, 2020, 748, 142457.	8.0	35
11	Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agriculture, Ecosystems and Environment, 2020, 304, 107148.	5.3	65
12	Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Science of the Total Environment, 2020, 717, 137127.	8.0	44
13	Effect of long term fertilization management strategies on methane emissions and rice yield. Science of the Total Environment, 2020, 725, 138261.	8.0	15
14	Yield and N Utilization of Transplanted and Directâ€6eeded Rice with Controlled or Slowâ€Release Fertilizer. Agronomy Journal, 2019, 111, 1208-1217.	1.8	16
15	Combined controlled-released nitrogen fertilizers and deep placement effects of N leaching, rice yield and N recovery in machine-transplanted rice. Agriculture, Ecosystems and Environment, 2018, 265, 402-412.	5.3	120