Andrew D Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4133854/publications.pdf

Version: 2024-02-01

43 papers 2,893 citations

20 h-index 38 g-index

47 all docs

47 docs citations

47 times ranked

4697 citing authors

#	Article	IF	CITATIONS
1	Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep, 2022, 45, .	1.1	6
2	0029 Developing a pipeline for translating genome-wide association signals to behavioral correlates of sleep dysfunction. Sleep, 2022, 45, A13-A13.	1.1	0
3	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	21.4	68
4	Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biology, 2022, 23, .	8.8	12
5	Genome-wide association study implicates novel loci and reveals candidate effector genes for longitudinal pediatric bone accrual. Genome Biology, 2021, 22, 1.	8.8	239
6	Variant to Gene Mapping to Discover New Targets for Immune Tolerance. Frontiers in Immunology, 2021, 12, 633219.	4.8	3
7	Constrained chromatin accessibility in PU.1-mutated agammaglobulinemia patients. Journal of Experimental Medicine, 2021, 218, .	8.5	31
8	3D promoter architecture re-organization during iPSC-derived neuronal cell differentiation implicates target genes for neurodevelopmental disorders. Progress in Neurobiology, 2021, 201, 102000.	5.7	24
9	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	12.8	27
10	Abstract 3028: Integrative genomics reveals lncRNAs associated with pediatric cancer., 2021,,.		1
11	<scp>CRISPRâ€Cas9</scp> –Mediated Genome Editing Confirms <scp><i>EPDR1</i></scp> as an Effector Gene at the <scp>BMD GWAS</scp> â€Implicated † <scp><i>STARD3NL</i></scp> ' Locus. JBMR Plus, 2021, e10531.	52,.7	5
12	Restriction enzyme selection dictates detection range sensitivity in chromatin conformation capture-based variant-to-gene mapping approaches. Human Genetics, 2021, 140, 1441-1448.	3.8	6
13	A UVB-responsive common variant at chromosome band 7p21.1 confers tanning response and melanoma risk via regulation of the aryl hydrocarbon receptor, AHR. American Journal of Human Genetics, 2021, 108, 1611-1630.	6.2	7
14	Biological constraints on GWAS SNPs at suggestive significance thresholds reveal additional BMI loci. ELife, 2021, 10, .	6.0	27
15	Cis-regulatory architecture of human ESC-derived hypothalamic neuron differentiation aids in variant-to-gene mapping of relevant complex traits. Nature Communications, 2021, 12, 6749.	12.8	11
16	Next steps in the identification of gene targets for type 1 diabetes. Diabetologia, 2020, 63, 2260-2269.	6.3	12
17	Highâ€resolution, genomeâ€wide, promoterâ€focused Capture C in astrocytes implicates causal genes for Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043368.	0.8	О
18	The Identity of Human Tissue-Emigrant CD8+ T Cells. Cell, 2020, 183, 1946-1961.e15.	28.9	58

#	Article	IF	Citations
19	Canonical Notch signaling is required for bone morphogenetic protein-mediated human osteoblast differentiation. Stem Cells, 2020, 38, 1332-1347.	3.2	22
20	Collapse of the hepatic gene regulatory network in the absence of FoxA factors. Genes and Development, 2020, 34, 1039-1050.	5.9	36
21	Mapping effector genes at lupus GWAS loci using promoter Capture-C in follicular helper T cells. Nature Communications, 2020, 11, 3294.	12.8	44
22	IL-1 Transcriptional Responses to Lipopolysaccharides Are Regulated by a Complex of RNA Binding Proteins. Journal of Immunology, 2020, 204, 1334-1344.	0.8	12
23	Genetic and Epigenetic Fine Mapping of Complex Trait Associated Loci in the Human Liver. American Journal of Human Genetics, 2019, 105, 89-107.	6.2	35
24	Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nature Communications, 2019, 10, 1260.	12.8	101
25	Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Frontiers in Cell and Developmental Biology, 2019, 7, 377.	3.7	141
26	T follicular helper cells in human efferent lymph retain lymphoid characteristics. Journal of Clinical Investigation, 2019, 129, 3185-3200.	8.2	116
27	The Loss of TET2 Promotes CD8+ T Cell Memory Differentiation. Journal of Immunology, 2018, 200, 82-91.	0.8	112
28	O3â€03â€04: A HIGH RESOLUTION CAPTURE PROMOTER INTERACTOME IMPLICATES CAUSAL GENES AT ALZHEIMER'S DISEASE GWAS LOCI. Alzheimer's and Dementia, 2018, 14, P1016.	0.8	0
29	Leveraging epigenomics and contactomics data to investigate SNP pairs in GWAS. Human Genetics, 2018, 137, 413-425.	3.8	8
30	Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nature Communications, 2017, 8, 15677.	12.8	34
31	A Dementia-Associated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. American Journal of Human Genetics, 2017, 101, 643-663.	6.2	87
32	The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia, 2016, 59, 2360-2368.	6.3	68
33	The Methylcytosine Dioxygenase TET2 Regulates CD8+ T Cell Memory Differentiation. Blood, 2016, 128, 3692-3692.	1.4	0
34	Long-Range Transcriptional Control of the <i>Il2</i> Gene by an Intergenic Enhancer. Molecular and Cellular Biology, 2015, 35, 3880-3891.	2.3	13
35	Ikaros Imposes a Barrier to CD8+ T Cell Differentiation by Restricting Autocrine IL-2 Production. Journal of Immunology, 2014, 192, 5118-5129.	0.8	42
36	Two novel type 2 diabetes loci revealed through integration of TCF7L2 DNA occupancy and SNP association data. BMJ Open Diabetes Research and Care, 2014, 2, e000052.	2.8	17

#	Article	IF	CITATIONS
37	New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation. Nature Reviews Immunology, 2014, 14, 261-270.	22.7	76
38	Regulation of T Cell Differentiation and Alloimmunity by the Cyclin-Dependent Kinase Inhibitor p18ink4c. PLoS ONE, 2014, 9, e91587.	2.5	8
39	Cyclin-dependent kinases: Molecular switches controlling anergy and potential therapeutic targets for tolerance. Seminars in Immunology, 2007, 19, 173-179.	5.6	19
40	Cell-cycle regulation of T-cell responses - novel approaches to the control of alloimmunity. Immunological Reviews, 2003, 196, 25-36.	6.0	20
41	The role of peripheral T–cell deletion in transplantation tolerance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 617-623.	4.0	36
42	Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Medicine, 1999, 5, 1298-1302.	30.7	728
43	Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nature Medicine, 1999, 5, 1303-1307.	30.7	574