Christine A Kozak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis. Retrovirology, 2021, 18, 20.	2.0	4
2	The Oldest Co-opted <i>gag</i> Gene of a Human Endogenous Retrovirus Shows Placenta-Specific Expression and Is Upregulated in Diffuse Large B-Cell Lymphomas. Molecular Biology and Evolution, 2021, 38, 5453-5471.	8.9	11
3	Patterns of Coevolutionary Adaptations across Time and Space in Mouse Gammaretroviruses and Three Restrictive Host Factors. Viruses, 2021, 13, 1864.	3.3	5
4	Retroviral Restriction Factors and Their Viral Targets: Restriction Strategies and Evolutionary Adaptations. Microorganisms, 2020, 8, 1965.	3.6	21
5	Evolution of the rodent Trim5 cluster is marked by divergent paralogous expansions and independent acquisitions of TrimCyp fusions. Scientific Reports, 2019, 9, 11263.	3.3	30
6	Mutational analysis and glycosylation sensitivity of restrictive XPR1 gammaretrovirus receptors in six mammalian species. Virology, 2019, 535, 154-161.	2.4	2
7	Distribution of endogenous gammaretroviruses and variants of the Fv1 restriction gene in individual mouse strains and strain subgroups. PLoS ONE, 2019, 14, e0219576.	2.5	4
8	Disrupting MLV integrase:BET protein interaction biases integration into quiescent chromatin and delays but does not eliminate tumor activation in a MYC/Runx2 mouse model. PLoS Pathogens, 2019, 15, e1008154.	4.7	10
9	Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant. Viruses, 2018, 10, 418.	3.3	1
10	Ancient Evolutionary Origin and Positive Selection of the Retroviral Restriction Factor <i>Fv1</i> in Muroid Rodents. Journal of Virology, 2018, 92, .	3.4	23
11	Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. Journal of Virology, 2017, 91, .	3.4	14
12	Permissive XPR1 gammaretrovirus receptors in four mammalian species are functionally distinct in interference tests. Virology, 2016, 497, 53-58.	2.4	1
13	Sequence Diversity, Intersubgroup Relationships, and Origins of the Mouse Leukemia Gammaretroviruses of Laboratory and Wild Mice. Journal of Virology, 2016, 90, 4186-4198.	3.4	13
14	Origins of the Endogenous and Infectious Laboratory Mouse Gammaretroviruses. Viruses, 2015, 7, 1-26.	3.3	63
15	Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8595-8600.	7.1	35
16	Escape variants of the XPR1 gammaretrovirus receptor are rare due to reliance on a splice donor site and a short hypervariable loop. Virology, 2014, 468-470, 63-71.	2.4	2
17	Evolution of different antiviral strategies in wild mouse populations exposed to different gammaretroviruses. Current Opinion in Virology, 2013, 3, 657-663.	5.4	14
18	The Avian XPR1 Gammaretrovirus Receptor Is under Positive Selection and Is Disabled in Bird Species in Contact with Virus-Infected Wild Mice. Journal of Virology, 2013, 87, 10094-10104.	3.4	17

CHRISTINE A KOZAK

#	Article	IF	CITATIONS
19	Endogenous Gammaretrovirus Acquisition in Mus musculus Subspecies Carrying Functional Variants of the XPR1 Virus Receptor. Journal of Virology, 2013, 87, 9845-9855.	3.4	16
20	Two Genetic Determinants Acquired Late in Mus Evolution Regulate the Inclusion of Exon 5, which Alters Mouse APOBEC3 Translation Efficiency. PLoS Pathogens, 2012, 8, e1002478.	4.7	23
21	Viewpoint on Emv2, the onlhy endogenous ecotropic murine leukemia virus of C57BL/6 mice. Retrovirology, 2012, 9, 25.	2.0	3
22	Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms. Retrovirology, 2012, 9, 58.	2.0	18
23	Naturally Occurring Polymorphisms of the Mouse Gammaretrovirus Receptors CAT-1 and XPR1 Alter Virus Tropism and Pathogenicity. Advances in Virology, 2011, 2011, 1-16.	1.1	11
24	Common Inbred Strains of the Laboratory Mouse That Are Susceptible to Infection by Mouse Xenotropic Gammaretroviruses and the Human-Derived Retrovirus XMRV. Journal of Virology, 2010, 84, 12841-12849.	3.4	26
25	Evolution of Functional and Sequence Variants of the Mammalian XPR1 Receptor for Mouse Xenotropic Gammaretroviruses and the Human-Derived Retrovirus XMRV. Journal of Virology, 2010, 84, 11970-11980.	3.4	35
26	Adaptive Evolution of Mus Apobec3 Includes Retroviral Insertion and Positive Selection at Two Clusters of Residues Flanking the Substrate Groove. PLoS Pathogens, 2010, 6, e1000974.	4.7	49
27	The mouse "xenotropic" gammaretroviruses and their XPR1 receptor. Retrovirology, 2010, 7, 101.	2.0	62
28	Origin, antiviral function and evidence for positive selection of the gammaretrovirus restriction gene Fv1 in the genus Mus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3259-3263.	7.1	75
29	Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage. Virology, 2009, 391, 232-239.	2.4	6
30	Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor. Retrovirology, 2009, 6, 87.	2.0	44
31	Role of receptor polymorphism and glycosylation in syncytium induction and host range variation of ecotropic mouse gammaretroviruses. Retrovirology, 2008, 5, 2.	2.0	11
32	Wild Mouse Variants of Envelope Genes of Xenotropic/Polytropic Mouse Gammaretroviruses and Their XPR1 Receptors Elucidate Receptor Determinants of Virus Entry. Journal of Virology, 2007, 81, 10550-10557.	3.4	34
33	Analysis of the Cell Distribution of Endogenous Murine Leukemia Virus in the Brains of SAMR1 and SAMP8 Mice. Annals of the New York Academy of Sciences, 2006, 928, 347-347.	3.8	Ο
34	Rmcf2 , a Xenotropic Provirus in the Asian Mouse Species Mus castaneus , Blocks Infection by Polytropic Mouse Gammaretroviruses. Journal of Virology, 2005, 79, 9677-9684.	3.4	38
35	Novel Host Range and Cytopathic Variant of Ecotropic Friend Murine Leukemia Virus. Journal of Virology, 2004, 78, 12189-12197.	3.4	12
36	Characterization of Recombinant Nonecotropic Murine Leukemia Viruses from the Wild Mouse Species Mus spretus. Journal of Virology, 2003, 77, 12773-12781.	3.4	14

CHRISTINE A KOZAK

#	Article	IF	CITATIONS
37	Generation of Novel Syncytium-Inducing and Host Range Variants of Ecotropic Moloney Murine Leukemia Virus in Mus spicilegus. Journal of Virology, 2003, 77, 5065-5072.	3.4	12
38	Characterization of a Polytropic Murine Leukemia Virus Proviral Sequence Associated with the Virus Resistance Gene Rmcf of DBA/2 Mice. Journal of Virology, 2002, 76, 8218-8224.	3.4	33
39	Genetic Control of a Mouse Serum Lipoprotein Factor That Inactivates Murine Leukemia Viruses: Evaluation of Apolipoprotein F as a Candidate. Journal of Virology, 2002, 76, 2279-2286.	3.4	9
40	A Single Amino Acid Change in the Murine Leukemia Virus Capsid Gene Responsible for theFv1nr Phenotype. Journal of Virology, 2000, 74, 5385-5387.	3.4	29
41	Genetic mapping of eight SH3 domain genes on seven mouse chromosomes. Mammalian Genome, 1999, 10, 402-404.	2.2	1
42	Identification and genetic mapping of differentially expressed genes in mice differing at the If1 interferon regulatory locus. Mammalian Genome, 1999, 10, 853-857.	2.2	5
43	Mouse Chromosome 5. Mammalian Genome, 1999, 10, 944-944.	2.2	2
44	Genetic mapping of six mouse peroxiredoxin genes and fourteen peroxiredoxin related sequences. Mammalian Genome, 1999, 10, 1017-1019.	2.2	31
45	Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics, 1999, 49, 420-428.	2.4	126
46	Receptor-Mediated Interference Mechanism Responsible for Resistance to Polytropic Leukemia Viruses in <i>Mus castaneus</i> . Journal of Virology, 1999, 73, 3733-3736.	3.4	18
47	Chromosomal localization of acquired MMTV proviral integration sites in T-cell lymphomas. Mammalian Genome, 1998, 9, 84-85.	2.2	3
48	Genetic mapping of the mouse ferritin light chain gene and 11 pseudogenes on 11 mouse chromosomes. Mammalian Genome, 1998, 9, 111-113.	2.2	4
49	Evaluation of mouse Sfrp3/Frzb1 as a candidate for the lst, Ul, and Far mutants on Chromosome 2. Mammalian Genome, 1998, 9, 385-387.	2.2	9
50	Conserved gene structure and genomic linkage for D-dopachrome tautomerase (DDT) and MIF. Mammalian Genome, 1998, 9, 753-757.	2.2	54
51	Mouse Chromosome 5. Mammalian Genome, 1998, 8, S91-S113.	2.2	6
52	The mouse genome encodes a single homolog of the antimicrobial peptide human β-defensin 1. FEBS Letters, 1997, 413, 45-49.	2.8	94
53	Molecular Cloning and Characterization of a cDNA, CHEMR1, Encoding a Chemokine Receptor With a Homology to the Human C-C Chemokine Receptor, CCR-4. Blood, 1997, 89, 4448-4460.	1.4	14
54	Genetic mapping in the mouse of Kif4, a gene encoding a kinesin-like motor protein. Mammalian Genome, 1997, 8, 541-541.	2.2	2

CHRISTINE A KOZAK

#	Article	IF	CITATIONS
55	Genetic mapping of the gene encoding cysteine string protein. Mammalian Genome, 1997, 8, 456-457.	2.2	3
56	Cloning and chromosomal localization of Ncf4, the mouse homologue of p40-phox. Immunogenetics, 1997, 45, 217-219.	2.4	4
57	Single Amino Acid Changes in the Murine Leukemia Virus Capsid Protein Gene Define the Target ofFv1Resistance. Virology, 1996, 225, 300-305.	2.4	147
58	Function of 14-3-3 proteins. Nature, 1996, 382, 308-308.	27.8	7
59	Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nature Genetics, 1994, 7, 154-157.	21.4	242
60	Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Letters, 1994, 347, 279-283.	2.8	308
61	Genetic mapping of the mouse gene encoding dipeptidyl aminopeptidase-like proteins. Mammalian Genome, 1993, 4, 234-237.	2.2	10
62	Structure, Genetic Mapping, and Expression of the Mouse <i>Hgf</i> /scatter factor Gene. Cell Adhesion and Communication, 1993, 1, 101-111.	1.7	10
63	Mouse Chromosome 5. Mammalian Genome, 1992, 3, S65-S80.	2.2	7
64	Thyroid Peroxidase: Rat cDNA Sequence, Chromosomal Localization in Mouse, and Regulation of Gene Expression by Comparison to Thyroglobulin in Rat FRTL-5 Cells. Molecular Endocrinology, 1989, 3, 1681-1692.	3.7	83
65	Nucleotide sequence and mode of transmission of the wild mouse ecotropic virus, HoMuLV. Virology, 1989, 173, 58-67.	2.4	24
66	HoMuLV: A novel pathogenic ecotropic virus isolated from the European mouse, Mus hortulanus. Virology, 1988, 165, 469-475.	2.4	13