
Irisarri, Iker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132866/publications.pdf Version: 2024-02-01

IDISADDI IVED

#	Article	IF	CITATIONS
1	Crossroads in the evolution of plant specialized metabolism. Seminars in Cell and Developmental Biology, 2023, 134, 37-58.	5.0	39
2	Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates. Journal of Animal Ecology, 2022, 91, 1163-1179.	2.8	4
3	Plant genome sequence assembly in the era of long reads: Progress, challenges and future directions. Quantitative Plant Biology, 2022, 3, .	2.0	37
4	Widespread occurrence of covalent lysine–cysteine redox switches in proteins. Nature Chemical Biology, 2022, 18, 368-375.	8.0	34
5	Punctuated ancestral gene gains in streptophyte evolution. Molecular Plant, 2022, , .	8.3	0
6	Extensive introgression at late stages of species formation: Insights from grasshopper hybrid zones. Molecular Ecology, 2022, 31, 2384-2399.	3.9	8
7	Different patterns of gene evolution underpin waterâ€related innovations in land plants. New Phytologist, 2022, , .	7.3	0
8	A Phylogenomic Backbone for Gastropod Molluscs. Systematic Biology, 2022, 71, 1271-1280.	5.6	8
9	Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecology and Evolution, 2022, 12, .	1.9	5
10	Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 2021, 155, 106967.	2.7	22
11	A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nature Communications, 2021, 12, 1879.	12.8	124
12	Phylogenomic Insights into the Origin of Primary Plastids. Systematic Biology, 2021, 71, 105-120.	5.6	22
13	The genome of the venomous snail <i>Lautoconus ventricosus</i> sheds light on the origin of conotoxin diversity. GigaScience, 2021, 10, .	6.4	29
14	The evolution of the phenylpropanoid pathway entailed pronounced radiations and divergences of enzyme families. Plant Journal, 2021, 107, 975-1002.	5.7	67
15	Phylogenomics and evolutionary history of Oreobates (Anura: Craugastoridae) Neotropical frogs along elevational gradients. Molecular Phylogenetics and Evolution, 2021, 161, 107167.	2.7	1
16	Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590, 284-289.	27.8	132
17	Automated Removal of Non-homologous Sequence Stretches with PREQUAL. Methods in Molecular Biology, 2021, 2231, 147-162.	0.9	0
18	Underwater CAM photosynthesis elucidated by Isoetes genome. Nature Communications, 2021, 12, 6348.	12.8	56

Irisarri, İker

#	Article	IF	CITATIONS
19	Initial Phylotranscriptomic Confirmation of Homoplastic Evolution of the Conspicuous Coloration and Bufoniform Morphology of Pumpkin-Toadlets in the Genus Brachycephalus. Toxins, 2021, 13, 816.	3.4	3
20	Unexpected cryptic species among streptophyte algae most distant to land plants. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212168.	2.6	22
21	Historical isolation facilitates species radiation by sexual selection: Insights from <i>Chorthippus</i> grasshoppers. Molecular Ecology, 2020, 29, 4985-5002.	3.9	18
22	Sarcopterygian fin ontogeny elucidates the origin of hands with digits. Science Advances, 2020, 6, eabc3510.	10.3	28
23	A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evolutionary Biology, 2020, 20, 22.	3.2	35
24	Conotoxin Diversity in the Venom Gland Transcriptome of the Magician's Cone, Pionoconus magus. Marine Drugs, 2019, 17, 553.	4.6	22
25	Environmental temperatures shape thermal physiology as well as diversification and genome-wide substitution rates in lizards. Nature Communications, 2019, 10, 4077.	12.8	89
26	New patellogastropod mitogenomes help counteracting long-branch attraction in the deep phylogeny of gastropod mollusks. Molecular Phylogenetics and Evolution, 2019, 133, 12-23.	2.7	50
27	PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences. Bioinformatics, 2018, 34, 3929-3930.	4.1	96
28	Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nature Communications, 2018, 9, 3159.	12.8	162
29	Animal tracking meets migration genomics: transcriptomic analysis of a partially migratory bird species. Molecular Ecology, 2017, 26, 3204-3216.	3.9	48
30	Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches. Molecular Phylogenetics and Evolution, 2017, 115, 16-26.	2.7	44
31	Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology and Evolution, 2017, 1, 1370-1378.	7.8	247
32	The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. Systematic Biology, 2016, 65, 1057-1075.	5.6	45
33	The complete mitochondrial genomes of the Galápagos iguanas, <i>Amblyrhynchus cristatus</i> and <i>Conolophus subcristatus</i> . Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 3699-3700.	0.7	7
34	Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish. Genome Biology and Evolution, 2015, 7, 3033-3046.	2.5	8
35	Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. Journal of Molecular Evolution, 2015, 81, 90-109.	1.8	42
36	Molecular phylogeny of Acanthochitonina (Mollusca: Polyplacophora: Chitonida): three new mitochondrial genomes, rearranged gene orders and systematics. Journal of Natural History, 2014, 48, 2825-2853.	0.5	31

Irisarri, İker

#	Article	IF	CITATIONS
37	The complete mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evolutionary Biology, 2014, 14, 197.	3.2	20
38	Diversity and evolution of membrane intrinsic proteins. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1468-1481.	2.4	199
39	The complete mitoc genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evolutionary Biology, 2014, 14, 197.	3.2	16
40	A multigene species tree for Western Mediterranean painted frogs (Discoglossus). Molecular Phylogenetics and Evolution, 2012, 64, 690-696.	2.7	29
41	The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics, 2012, 13, 626.	2.8	53
42	Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae. BMC Evolutionary Biology, 2011, 11, 114.	3.2	47
43	The complete mitochondrial genome of the relict frogLeiopelma archeyi: Insights into the root of the frog Tree of Life. Mitochondrial DNA, 2010, 21, 173-182.	0.6	32