
Yu Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Sensitive Mixed Lanthanide Metal–Organic Framework Self-Calibrated Luminescent Thermometer. Journal of the American Chemical Society, 2013, 135, 15559-15564.	6.6	608
2	Dualâ€Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	11.1	604
3	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5.2	412
4	Metal–Organic Framework Nanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Letters, 2020, 12, 103.	14.4	363
5	Secondâ€Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metalâ€ [®] Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 10542-10545.	7.2	279
6	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	7.8	260
7	Turn-on and Ratiometric Luminescent Sensing of Hydrogen Sulfide Based on Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2016, 8, 32259-32265.	4.0	207
8	Cu(<scp>i</scp>)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. Chemical Communications, 2014, 50, 1444-1446.	2.2	200
9	Two-Photon Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 4026-4029.	6.6	185
10	A Low Cytotoxic Cationic Metal–Organic Framework Carrier for Controllable Drug Release. Journal of Medicinal Chemistry, 2014, 57, 5679-5685.	2.9	177
11	Polarized three-photon-pumped laser in a single MOF microcrystal. Nature Communications, 2016, 7, 11087.	5.8	165
12	Sensing-functional luminescent metal–organic frameworks. CrystEngComm, 2016, 18, 3746-3759.	1.3	160
13	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A. 2013. 1. 77-81.	5.2	148
14	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie - International Edition, 2021, 60, 15995-16002.	7.2	148
15	Confinement of Perovskiteâ€QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. Advanced Materials, 2019, 31, e1806897.	11.1	124
16	A Terbium Metal–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg ²⁺ lons in Aqueous Solution. Chemistry - A European Journal, 2016, 22, 18429-18434.	1.7	121
17	Engineering microporous ethane-trapping metal–organic frameworks for boosting ethane/ethylene separation. Journal of Materials Chemistry A, 2020, 8, 3613-3620.	5.2	120
18	A luminescent cerium metal–organic framework for the turn-on sensing of ascorbic acid. Chemical Communications, 2017, 53, 11221-11224.	2.2	111

Yu Yang

#	Article	IF	CITATIONS
19	A porphyrin-based metal–organic framework as a pH-responsive drug carrier. Journal of Solid State Chemistry, 2016, 237, 307-312.	1.4	93
20	Pressure controlled drug release in a Zr-cluster-based MOF. Journal of Materials Chemistry B, 2016, 4, 6398-6401.	2.9	86
21	A Large Capacity Cationic Metal–Organic Framework Nanocarrier for Physiological pH Responsive Drug Delivery. Molecular Pharmaceutics, 2016, 13, 2782-2786.	2.3	85
22	A luminescent ratiometric thermometer based on thermally coupled levels of a Dy-MOF. Journal of Materials Chemistry C, 2017, 5, 5044-5047.	2.7	78
23	A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF. Dalton Transactions, 2017, 46, 7549-7555.	1.6	68
24	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	1.3	67
25	Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. Journal of Solid State Chemistry, 2020, 281, 121032.	1.4	64
26	Thermal Stimuliâ€Triggered Drug Release from a Biocompatible Porous Metal–Organic Framework. Chemistry - A European Journal, 2017, 23, 10215-10221.	1.7	62
27	Efficient separation of C ₂ H ₂ from C ₂ H ₂ /CO ₂ mixtures in an acid–base resistant metal–organic framework. Chemical Communications, 2018, 54, 4846-4849.	2.2	62
28	Efficient Energy Transfer within Dyes Encapsulated Metal–Organic Frameworks to Achieve High Performance White Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800968.	3.6	62
29	A luminescent turn-up metal–organic framework sensor for tryptophan based on singlet–singlet Förster energy transfer. Journal of Materials Chemistry B, 2018, 6, 5174-5180.	2.9	61
30	Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. Journal of Solid State Chemistry, 2017, 253, 277-281.	1.4	57
31	Microporous Metal–Organic Framework with Exposed Amino Functional Group for High Acetylene Storage and Excellent C ₂ H ₂ /CO ₂ and C ₂ H ₂ /CH ₄ Separations. Crystal Growth and Design, 2017, 17, 2319-2322.	1.4	54
32	Ratiometric luminescence sensing based on a mixed Ce/Eu metal–organic framework. Journal of Materials Chemistry C, 2018, 6, 2054-2059.	2.7	54
33	Highly stable Y(<scp>iii</scp>)-based metal organic framework with two molecular building block for selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Inorganic Chemistry Frontiers, 2018, 5, 1193-1198.	3.0	51
34	Low-Cost and High-Performance Microporous Metal–Organic Framework for Separation of Acetylene from Carbon Dioxide. ACS Sustainable Chemistry and Engineering, 2019, 7, 1667-1672.	3.2	47
35	A biocompatible metal–organic framework as a pH and temperature dual-responsive drug carrier. Dalton Transactions, 2018, 47, 15882-15887.	1.6	45
36	A porous Zn-based metal-organic framework for pH and temperature dual-responsive controlled drug release. Microporous and Mesoporous Materials, 2017, 249, 55-60.	2.2	44

Yu Yang

#	Article	IF	CITATIONS
37	In situ secondary growth of Eu(III)-organic framework film for fluorescence sensing of sulfur dioxide. Sensors and Actuators B: Chemical, 2018, 260, 63-69.	4.0	44
38	Benchmark C ₂ H ₂ /CO ₂ Separation in an Ultraâ€Microporous Metal–Organic Framework via Copper(I)â€Alkynyl Chemistry. Angewandte Chemie, 2021, 133, 16131-16138.	1.6	43
39	A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Science China Materials, 2019, 62, 1315-1322.	3.5	41
40	A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. Journal of Solid State Chemistry, 2019, 270, 317-323.	1.4	41
41	A turn-on fluorescent probe for Cd ²⁺ detection in aqueous environments based on an imine functionalized nanoscale metal–organic framework. RSC Advances, 2017, 7, 54892-54897.	1.7	38
42	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	1.3	36
43	A novel metal-organic framework for high storage and separation of acetylene at room temperature. Journal of Solid State Chemistry, 2016, 241, 152-156.	1.4	34
44	A highly stable amino-coordinated MOF for unprecedented block off N ₂ adsorption and extraordinary CO ₂ /N ₂ separation. Chemical Communications, 2016, 52, 13568-13571.	2.2	33
45	A Twoâ€Dimensional Metal–Organic Framework as a Fluorescent Probe for Ascorbic Acid Sensing. European Journal of Inorganic Chemistry, 2018, 2018, 173-177.	1.0	28
46	Polyurethane-coated luminescent dye@MOF composites for highly-stable white LEDs. Journal of Materials Chemistry C, 2020, 8, 12308-12313.	2.7	28
47	Post-modified metal-organic framework as a turn-on fluorescent probe for potential diagnosis of neurological diseases. Microporous and Mesoporous Materials, 2019, 288, 109610.	2.2	27
48	A new metal-organic framework with suitable pore size and ttd-type topology revealing highly selective adsorption and separation of organic dyes. Journal of Solid State Chemistry, 2019, 277, 159-162.	1.4	22
49	Lanthanide metal–organic frameworks with nitrogen functional sites for the highly selective and sensitive detection of NADPH. Chemical Communications, 2020, 56, 10851-10854.	2.2	21
50	Stable and wide-wavelength tunable luminescence of CsPbX ₃ nanocrystals encapsulated in metal–organic frameworks. Journal of Materials Chemistry C, 2022, 10, 5550-5558.	2.7	21
51	A novel NbO-type metal-organic framework for highly separation of methane from C2-hydrocarbon at room temperature. Materials Letters, 2017, 196, 112-114.	1.3	15
52	Solventâ€Triggered Reversible Phase Changes in Two Manganeseâ€Based Metal–Organic Frameworks and Associated Sensing Events. Chemistry - A European Journal, 2018, 24, 13231-13237.	1.7	15
53	Tailoring the pore geometry and chemistry in microporous metal–organic frameworks for high methane storage working capacity. Chemical Communications, 2019, 55, 11402-11405.	2.2	13
54	Controlled dye release from a metal–organic framework: a new luminescent sensor for water. RSC Advances, 2020, 10, 2722-2726.	1.7	8

#	Article	IF	CITATIONS
55	Enhanced luminescence in multivariate metal–organic frameworks through an isolated-ligand strategy. Journal of Materials Chemistry C, 2022, 10, 10473-10479.	2.7	7
56	A Novel Zn (II)â€Based Metalâ€Organic Framework as a Highly Selective and Sensitive Luminescent Sensor for the Detection of Nitrofuran Antibiotics. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	3