
Stephen Lofts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	POSSMs: a parsimonious speciation model for metals in soils. Environmental Chemistry, 2022, 18, 335-351.	0.7	2
2	Enriching the Shared Socioeconomic Pathways to co-create consistent multi-sector scenarios for the UK. Science of the Total Environment, 2021, 756, 143172.	3.9	29
3	NanoSolveIT integration of tools for assessment of human and environmental exposure to nanomaterials. , 2021, , 81-120.		1
4	Modelling of long-term Zn, Cu, Cd and Pb dynamics from soils fertilised with organic amendments. Soil, 2021, 7, 107-123.	2.2	0
5	Measuring ZnO nanoparticles available concentrations in contaminated soils using the diffusive gradient in thin-films (DGT) technique. Science of the Total Environment, 2021, 793, 148654.	3.9	5
6	Metal Bioavailability Models: Current Status, Lessons Learned, Considerations for Regulatory Use, and the Path Forward. Environmental Toxicology and Chemistry, 2020, 39, 60-84.	2.2	67
7	Chemical transformation and surface functionalisation affect the potential to group nanoparticles for risk assessment. Environmental Science: Nano, 2020, 7, 3100-3107.	2.2	3
8	Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nanotechnology, 2020, 15, 731-742.	15.6	66
9	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	1.9	74
10	CONFIDENCE overview of improvements in radioecological human food chain models and future needs. Radioprotection, 2020, 55, S101-S108.	0.5	14
11	Nanoparticle Tracking Analysis of Gold Nanoparticles in Aqueous Media through an Inter-Laboratory Comparison. Journal of Visualized Experiments, 2020, , .	0.2	3
12	Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 2019, 6, 505-518.	2.2	24
13	Tools and rules for modelling uptake and bioaccumulation of nanomaterials in invertebrate organisms. Environmental Science: Nano, 2019, 6, 1985-2001.	2.2	43
14	Systematic analysis of freshwater metal toxicity with WHAM-FTOX. Aquatic Toxicology, 2019, 212, 128-137.	1.9	9
15	Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability, 2019, 36, 105-115.	3.1	54
16	Predicting the bioavailability of sedimentâ€bound uranium to the freshwater midge (<i>Chironomus) Tj ETQq0 C</i>	0 rgBT /0 2.2	Overlock 10 Tf 10
17	Determination and Prediction of Zinc Speciation in Estuaries. Environmental Science & Technology, 2018, 52, 14245-14255.	4.6	6
18	Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. Journal of Environmental Management, 2018, 223, 150-164.	3.8	20

#	Article	IF	CITATIONS
19	Effects of aging and soil properties on zinc oxide nanoparticle availability and its ecotoxicological effects to the earthworm <i>Eisenia andrei</i> . Environmental Toxicology and Chemistry, 2017, 36, 137-146.	2.2	72
20	Comparison of four methods for bioavailabilityâ€based risk assessment of mixtures of Cu, Zn, and Ni in freshwater. Environmental Toxicology and Chemistry, 2017, 36, 2123-2138.	2.2	21
21	Modelling trace metal transfer in large rivers under dynamic hydrology: A coupled hydrodynamic and chemical equilibrium model. Environmental Modelling and Software, 2017, 89, 77-96.	1.9	19
22	Sewage sludge treated with metal nanomaterials inhibits earthworm reproduction more strongly than sludge treated with metal metals in bulk/salt forms. Environmental Science: Nano, 2017, 4, 78-88.	2.2	33
23	The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments. Environmental Pollution, 2017, 220, 873-881.	3.7	37
24	Terrestrial ecosystem health under longâ€ŧerm metal inputs: modeling and risk assessment. Ecosystem Health and Sustainability, 2016, 2, .	1.5	6
25	Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils. Chemosphere, 2016, 155, 534-541.	4.2	25
26	Effect of Ocean Acidification on Organic and Inorganic Speciation of Trace Metals. Environmental Science & Technology, 2016, 50, 1906-1913.	4.6	92
27	Metal speciation from stream to open ocean: modelling v. measurement. Environmental Chemistry, 2016, 13, 464.	0.7	25
28	Dissolved trace metal speciation in estuarine and coastal waters: Comparison of WHAM/Model VII predictions with analytical results. Environmental Toxicology and Chemistry, 2015, 34, 53-63.	2.2	43
29	Assessment of co-contaminant effects on uranium and thorium speciation in freshwater using geochemical modelling. Journal of Environmental Radioactivity, 2015, 149, 99-109.	0.9	13
30	Testing WHAMâ€ <i>F</i> _{TOX} with laboratory toxicity data for mixtures of metals (Cu, Zn,) Tj ETQc	10 0 0 rgB	T /Qyerlock 1
31	Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches. Environmental Toxicology and Chemistry, 2015, 34, 741-753.	2.2	55
32	Modelling metal accumulation using humic acid as a surrogate for plant roots. Chemosphere, 2015, 124, 61-69.	4.2	13
33	Metabolomic analysis of soil communities can be used for pollution assessment. Environmental Toxicology and Chemistry, 2014, 33, 61-64.	2.2	89
34	Recent developments in surface complexation modeling. Environmental Toxicology and Chemistry, 2014, 33, 2170-2171.	2.2	5
35	The use of assemblage models to describe trace element partitioning, speciation, and fate: A review. Environmental Toxicology and Chemistry, 2014, 33, 2181-2196.	2.2	88
36	Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm <i>Eisenia fetida</i> . Nanotoxicology, 2014, 8, 559-572.	1.6	108

#	Article	IF	CITATIONS
37	The Effect of Advanced Treatment of Sewage Effluents on Metal Speciation and (bio)Availability. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 248-252.	1.3	6
38	Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicology and Environmental Safety, 2014, 108, 9-15.	2.9	58
39	Relating metal exposure and chemical speciation to trace metal accumulation in aquatic insects under natural field conditions. Science of the Total Environment, 2014, 496, 11-21.	3.9	31
40	Metal and proton toxicity to lake zooplankton: A chemical speciation based modelling approach. Environmental Pollution, 2014, 186, 115-125.	3.7	25
41	Recovery of macroinvertebrate species richness in acidified upland waters assessed with a field toxicity model. Ecological Indicators, 2014, 37, 341-350.	2.6	20
42	Modelling the effects of copper on soil organisms and processes using the free ion approach: Towards a multi-species toxicity model. Environmental Pollution, 2013, 178, 244-253.	3.7	34
43	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:msubsup><mml:mrow><mml:mtext>UO</mml:mtext></mml:mrow><mm and<mml:math <br="" altimg="si2.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>NpO</mml:mtext><td>l:mrow>< 1.6</td><td>mml:mn>2«</td></mml:mrow></mml:msubsup></mml:mrow></mml:math></mm </mml:msubsup></mml:mrow>	l:mrow>< 1.6	mml:mn>2«
44	An intermediate complexity dynamic model for predicting accumulation of atmospherically-deposited metals (Ni, Cu, Zn, Cd, Pb) in catchment soils: 1400 to present. Environmental Pollution, 2013, 180, 236-245.	3.7	8
45	Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-FTOX model. Aquatic Toxicology, 2013, 142-143, 114-122.	1.9	48
46	The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. Aquatic Toxicology, 2013, 142-143, 294-302.	1.9	43
47	Testing Copper-Speciation Predictions in Freshwaters over a Wide Range of Metal–Organic Matter Ratios. Environmental Science & Technology, 2013, 47, 130118162041009.	4.6	13
48	Critical Loads of Heavy Metals for Soils. Environmental Pollution, 2013, , 211-237.	0.4	17
49	A new medium for <i>Caenorhabditis elegans</i> toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. Environmental Toxicology and Chemistry, 2013, 32, 1711-1717.	2.2	33
50	The effect of pH on the toxicity of zinc oxide nanoparticles to <i>Folsomia candida</i> in amended field soil. Environmental Toxicology and Chemistry, 2013, 32, 2349-2355.	2.2	63
51	Influence of soil pH on the toxicity of zinc oxide nanoparticles to the terrestrial isopod <i>Porcellionides pruinosus</i> . Environmental Toxicology and Chemistry, 2013, 32, 2808-2815.	2.2	41
52	Trace metal speciation predictions in natural aquatic systems: incorporation of dissolved organic matter (DOM) spectroscopic quality. Environmental Chemistry, 2012, 9, 356.	0.7	46
53	Metalâ€based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry, 2012, 31, 1679-1692.	2.2	355
54	Towards a renewed research agenda in ecotoxicology. Environmental Pollution, 2012, 160, 201-206.	3.7	78

#	Article	IF	CITATIONS
55	Estimation of Model VII humic binding constants for Pd2+, Sn2+, U4+, NpO22+, Pu4+ and PuO22+. Journal of Environmental Monitoring, 2011, 13, 2946.	2.1	12
56	Trace metals in the open oceans: speciation modelling based on humic-type ligands. Environmental Chemistry, 2011, 8, 304.	0.7	25
57	Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environmental Chemistry, 2011, 8, 225.	0.7	344
58	Assessing WHAM/Model VII against field measurements of free metal ion concentrations: model performance and the role of uncertainty in parameters and inputs. Environmental Chemistry, 2011, 8, 501.	0.7	114
59	Development of biotic ligand models for chronic manganese toxicity to fish, invertebrates, and algae. Environmental Toxicology and Chemistry, 2011, 30, 2407-2415.	2.2	34
60	Preâ€assessment of environmental impact of zinc and copper used in animal nutrition. EFSA Supporting Publications, 2010, 7, .	0.3	31
61	Derivation of Ecologically Based Soil Standards for Trace Elements. , 2010, , 7-80.		11
62	Toxicity of proton–metal mixtures in the field: Linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquatic Toxicology, 2010, 100, 112-119.	1.9	101
63	In Situ Speciation Measurements of Trace Metals in Headwater Streams. Environmental Science & Technology, 2009, 43, 7230-7236.	4.6	55
64	Increasing Iron Concentrations in UK Upland Waters. Aquatic Geochemistry, 2008, 14, 263-288.	1.5	80
65	The Chemical Speciation of Fe(III) in Freshwaters. Aquatic Geochemistry, 2008, 14, 337-358.	1.5	110
66	Impact of Soil Properties on Critical Concentrations of Cadmium, Lead, Copper, Zinc, and Mercury in Soil and Soil Solution in View of Ecotoxicological Effects. Reviews of Environmental Contamination and Toxicology, 2007, 191, 47-89.	0.7	66
67	Predicting cadmium adsorption on soils using WHAM VI. Chemosphere, 2007, 69, 605-612.	4.2	35
68	Critical Loads of Metals and Other Trace Elements to Terrestrial Environments. Environmental Science & Technology, 2007, 41, 6326-6331.	4.6	35
69	Solubility of major cations and Cu, Zn and Cd in soil extracts of some contaminated agricultural soils near a zinc smelter in Norway: modelling with a multisurface extension of WHAM. European Journal of Soil Science, 2007, 58, 1074-1086.	1.8	44
70	Validation of Transfer Functions Predicting Cd and Pb Free Metal Ion Activity in Soil Solution as a Function of Soil Characteristics and Reactive Metal Content. Water, Air, and Soil Pollution, 2007, 184, 217-234.	1.1	21
71	Simulating the long-term chemistry of an upland UK catchment: Major solutes and acidification. Environmental Pollution, 2006, 141, 151-166.	3.7	26
72	Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 2006, 141, 139-150.	3.7	61

#	Article	IF	CITATIONS
73	DEVELOPING A CRITICAL LOAD APPROACH FOR NATIONAL RISK ASSESSMENTS OF ATMOSPHERIC METAL DEPOSITION. Environmental Toxicology and Chemistry, 2006, 25, 883.	2.2	22
74	EFFECT OF pH ON METAL SPECIATION AND RESULTING METAL UPTAKE AND TOXICITY FOR EARTHWORMS. Environmental Toxicology and Chemistry, 2006, 25, 788.	2.2	74
75	Measurement and computation of zinc binding to natural dissolved organic matter in European surface waters. Analytica Chimica Acta, 2005, 542, 230-239.	2.6	47
76	BIOAVAILABILITY MODELS FOR PREDICTING ACUTE AND CHRONIC TOXICITY OF ZINC TO ALGAE, DAPHNIDS, AND FISH IN NATURAL SURFACE WATERS. Environmental Toxicology and Chemistry, 2005, 24, 1190.	2.2	94
77	Potentially toxic metals in ombrotrophic peat along a 400 km English–Scottish transect. Environmental Pollution, 2005, 136, 11-18.	3.7	17
78	Fractions Affected and Probabilistic Risk Assessment of Cu, Zn, Cd, and Pb in Soils Using the Free Ion Approach. Environmental Science & Technology, 2005, 39, 8533-8540.	4.6	23
79	Cation binding by acid-washed peat, interpreted with Humic Ion-Binding Model VI-FD. European Journal of Soil Science, 2004, 55, 433-447.	1.8	28
80	Deriving Soil Critical Limits for Cu, Zn, Cd, and Pb:Â A Method Based on Free Ion Concentrations. Environmental Science & Technology, 2004, 38, 3623-3631.	4.6	188
81	Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry, 2003, 66, 241-264.	1.7	167
82	The solid–solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environmental Pollution, 2003, 125, 213-225.	3.7	342
83	Complexation with Dissolved Organic Matter and Solubility Control of Heavy Metals in a Sandy Soil. Environmental Science & Technology, 2002, 36, 4804-4810.	4.6	477
84	Evaluation of different approaches to quantify strong organic acidity and acid–base buffering of organic-rich surface waters in Sweden. Water Research, 2002, 36, 4487-4496.	5.3	21
85	Modelling pH buffering and aluminium solubility in European forest soils. European Journal of Soil Science, 2001, 52, 189-204.	1.8	72
86	Modelling the solid-solution partitioning of organic matter in European forest soils. European Journal of Soil Science, 2001, 52, 215-226.	1.8	32
87	Reversal of acidification in upland waters of the English Lake District. Environmental Pollution, 1998, 103, 143-151.	3.7	30
88	Modelling the chemical speciation of trace metals in the surface waters of the Humber system. Science of the Total Environment, 1998, 210-211, 63-77.	3.9	105
89	An assemblage model for cation binding by natural particulate matter. Geochimica Et Cosmochimica Acta, 1998, 62, 2609-2625.	1.6	136