List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Modulation and Free-Space Transmissions of up to 6 Gbps Multilevel Signals With a 4.65-\$mu\$m Quantum Cascade Laser at Room Temperature. Journal of Lightwave Technology, 2022, 40, 2370-2377.	4.6	16
2	High-Dimensional Feature Based Non-Coherent Detection for Multi-Intensity Modulated Ultraviolet Communications. Journal of Lightwave Technology, 2022, 40, 1879-1887.	4.6	9
3	Charge Regulated Diffusion of Silica Nanoparticles into Wood for Flame Retardant Transparent Wood. Advanced Sustainable Systems, 2022, 6, .	5.3	19
4	Bridging the Terahertz Gap: Photonics-Assisted Free-Space Communications From the Submillimeter-Wave to the Mid-Infrared. Journal of Lightwave Technology, 2022, 40, 3149-3162.	4.6	33
5	Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications. Nature Communications, 2022, 13, 1388.	12.8	48
6	Gb/s LWIR FSO Transmission at 9.6 Âμm using a Directly-Modulated Quantum Cascade Laser and an Uncooled Quantum Cascade Detector. , 2022, , .		4
7	Feedforward Neural Network-Based EVM Estimation: Impairment Tolerance in Coherent Optical Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-10.	2.9	8
8	Free‧pace Communications Enabled by Quantum Cascade Lasers. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000407.	1.8	48
9	Deep Learning Assisted Pre-Carrier Phase Recovery EVM Estimation for Coherent Transmission Systems. , 2021, , .		2
10	Fast signal quality monitoring for coherent communications enabled by CNN-based EVM estimation. Journal of Optical Communications and Networking, 2021, 13, B12.	4.8	10
11	100 Gbaud On–Off Keying/Pulse Amplitude Modulation Links in C-Band for Short-Reach Optical Interconnects. Applied Sciences (Switzerland), 2021, 11, 4284.	2.5	3
12	Facile Processing of Transparent Wood Nanocomposites with Structural Color from Plasmonic Nanoparticles. Chemistry of Materials, 2021, 33, 3736-3745.	6.7	32
13	Experimental validation of CNNs versus FFNNs for time- and energy-efficient EVM estimation in coherent optical systems. Journal of Optical Communications and Networking, 2021, 13, E63.	4.8	4
14	Nonlinear Coherent Optical Systems in the Presence of Equalization Enhanced Phase Noise. Journal of Lightwave Technology, 2021, 39, 4646-4653.	4.6	46
15	Light Propagation in Transparent Wood: Efficient Rayâ€Tracing Simulation and Retrieving an Effective Refractive Index of Wood Scaffold. Advanced Photonics Research, 2021, 2, 2100135.	3.6	6
16	Short Reach Communication Technologies for Client-Side Optics Beyond 400 Gbps. IEEE Photonics Technology Letters, 2021, 33, 1046-1049.	2.5	8
17	Reversible Dual-Stimuli-Responsive Chromic Transparent Wood Biocomposites for Smart Window Applications. ACS Applied Materials & Interfaces, 2021, 13, 3270-3277.	8.0	47
18	Up to 6 Gbps Mid-Infrared Free-Space Transmission with a Directly Modulated Quantum Cascade Laser. , 2021		3

2021, , . 18

> 2

#	Article	IF	CITATIONS
19	Laser Linewidth Tolerant EVM Estimation Approach for Intelligent Signal Quality Monitoring Relying on Feedforward Neural Networks. , 2021, , .		3
20	200 Gbps/Lane IM/DD Technologies for Short Reach Optical Interconnects. Journal of Lightwave Technology, 2020, 38, 492-503.	4.6	117
21	Optical Power Budget of 25+ Gbps IM/DD PON with Digital Signal Post-Equalization. Applied Sciences (Switzerland), 2020, 10, 6106.	2.5	5
22	Refractive index of delignified wood for transparent biocomposites. RSC Advances, 2020, 10, 40719-40724.	3.6	22
23	Kernel Affine Projection for Nonlinearity Tolerant Optical Short Reach Systems. IEEE Transactions on Communications, 2020, 68, 6403-6412.	7.8	5
24	On the Effect of Modified Carbohydrates on the Size and Shape of Gold and Silver Nanostructures. Nanomaterials, 2020, 10, 1417.	4.1	14
25	Non-Coherent Detection for Ultraviolet Communications With Inter-Symbol Interference. Journal of Lightwave Technology, 2020, 38, 4699-4707.	4.6	9
26	Telecommunication Compatibility Evaluation for Co-existing Quantum Key Distribution in Homogenous Multicore Fiber. IEEE Access, 2020, 8, 78836-78846.	4.2	8
27	Self-reconstruction of twisted Laguerre-Gaussian Schell-model beams partially blocked by an opaque obstacle. Optics Express, 2020, 28, 31510.	3.4	16
28	300+ Gbps Short-Reach Optical Communications. , 2020, , .		1
29	Nonlinearity Tolerant High-Speed DMT Transmission With 1.5- <italic>μ</italic> m Single-Mode VCSEL and Multi-Core Fibers for Optical Interconnects. Journal of Lightwave Technology, 2019, 37, 380-388.	4.6	14
30	Towards 25+Gbpsλ IM-DD PON: NRZ, Duobinary, PAM4, and DMT Transmission and Optical Budget Comparison. , 2019, , .		0
31	Thickness Dependence of Optical Transmittance of Transparent Wood: Chemical Modification Effects. ACS Applied Materials & Interfaces, 2019, 11, 35451-35457.	8.0	72
32	Phase detection of coherence singularities and determination of the topological charge of a partially coherent vortex beam. Applied Physics Letters, 2019, 114, .	3.3	34
33	Toward Terabit Digital Radio over Fiber Systems: Architecture and Key Technologies. IEEE Communications Magazine, 2019, 57, 131-137.	6.1	32
34	Phase Noise Cancellation in Coherent Communication Systems Using a Radio Frequency Pilot Tone. Applied Sciences (Switzerland), 2019, 9, 4717.	2.5	4
35	140/180/204-Gbaud OOK Transceiver for Inter- and Intra-Data Center Connectivity. Journal of Lightwave Technology, 2019, 37, 178-187.	4.6	48
36	High-Speed PAM4-Based Optical SDM Interconnects With Directly Modulated Long-Wavelength VCSEL. Journal of Lightwave Technology, 2019, 37, 356-362.	4.6	19

#	Article	IF	CITATIONS
37	Integrated Dual-DFB Laser for 408 GHz Carrier Generation Enabling 131 Gbit/s Wireless Transmission over 10.7 Meters. , 2019, , .		22
38	Beyond 200 Gbps per Lane Intensity Modulation Direct Detection (IM/DD) Transmissions for Optical Interconnects: Challenges and Recent Developments. , 2019, , .		14
39	Effect of transparent wood on the polarization degree of light. Optics Letters, 2019, 44, 2962.	3.3	10
40	Key technologies to enable terabit-scale digital radio-over-fiber systems. , 2019, , .		0
41	Reconfigurable frequency coding of triggered single photons in the telecom C–band. Optics Express, 2019, 27, 14400.	3.4	2
42	0.4 THz Photonic-Wireless Link With 106 Gb/s Single Channel Bitrate. Journal of Lightwave Technology, 2018, 36, 610-616.	4.6	113
43	Thermal Reflow Engineered Cylindrical Polymer Waveguides for Optical Interconnects. IEEE Photonics Technology Letters, 2018, 30, 447-450.	2.5	4
44	Light Scattering by Structurally Anisotropic Media: A Benchmark with Transparent Wood. Advanced Optical Materials, 2018, 6, 1800999.	7.3	39
45	TDHQ Enabling Fine-Granularity Adaptive Loading for SSB-DMT Systems. IEEE Photonics Technology Letters, 2018, 30, 1687-1690.	2.5	4
46	Spatial division multiplexing for optical data center networks. , 2018, , .		2
47	Real-time 100 Gbps/λ/core NRZ and EDB IM/DD transmission over multicore fiber for intra-datacenter communication networks. Optics Express, 2018, 26, 10519.	3.4	31
48	Multi-channel collision-free reception for optical interconnects. Optics Express, 2018, 26, 13214.	3.4	2
49	Complete spatial coherence characterization of quasi-random laser emission from dye doped transparent wood. Optics Express, 2018, 26, 13474.	3.4	14
50	Spectrally efficient digitized radio-over-fiber system with k-means clustering-based multidimensional quantization. Optics Letters, 2018, 43, 1546.	3.3	31
51	Nonlinearity-aware 200  Gbit/s DMT transmission for C-band short-reach optical interconnects with a single packaged electro-absorption modulated laser. Optics Letters, 2018, 43, 182.	3.3	42
52	Optically Transparent Wood: Recent Progress, Opportunities, and Challenges. Advanced Optical Materials, 2018, 6, 1800059.	7.3	135
53	Inkjet-printing of graphene saturable absorbers for ~2 μm bulk and waveguide lasers. Optical Materials Express, 2018, 8, 2803.	3.0	7
54	Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment. Optics Express, 2018, 26, 33956.	3.4	43

#	Article	IF	CITATIONS
55	204-GBaud On-Off Keying Transmitter for Inter-Data Center Communications. , 2018, , .		31
56	MCF-Enabled Self-Homodyne 16/64QAM Transmission for SDM Optical Access Networks. , 2018, , .		4
57	100 GHz Externally Modulated Laser for Optical Interconnects. Journal of Lightwave Technology, 2017, 35, 1174-1179.	4.6	64
58	Real-Time 100 Gb/s Transmission Using Three-Level Electrical Duobinary Modulation for Short-Reach Optical Interconnects. Journal of Lightwave Technology, 2017, 35, 1313-1319.	4.6	18
59	Experimental Study of 1.55- \$mu\$ m EML-Based Optical IM/DD PAM-4/8 Short Reach Systems. IEEE Photonics Technology Letters, 2017, 29, 523-526.	2.5	19
60	25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55- \$mu ext{m}\$ III-V/SOI DML. IEEE Photonics Technology Letters, 2017, 29, 960-963.	2.5	6
61	Laser Frequency Noise in Coherent Optical Systems: Spectral Regimes and Impairments. Scientific Reports, 2017, 7, 844.	3.3	23
62	Stochastic phenomena in a fiber Raman amplifier. Annalen Der Physik, 2017, 529, 1600238.	2.4	2
63	Analysis of chromatic dispersion compensation and carrier phase recovery in long-haul optical transmission system influenced by equalization enhanced phase noise. Optik, 2017, 138, 494-508.	2.9	16
64	Lasing from Organic Dye Molecules Embedded in Transparent Wood. Advanced Optical Materials, 2017, 5, 1700057.	7.3	87
65	Light-Converting Polymer/Si Nanocrystal Composites with Stable 60–70% Quantum Efficiency and Their Glass Laminates. ACS Applied Materials & Interfaces, 2017, 9, 30267-30272.	8.0	57
66	Low-complexity BCH codes with optimized interleavers for DQPSK systems with laser phase noise. Photonic Network Communications, 2017, 33, 328-333.	2.7	0
67	BCH Codes for Coherent Star DQAM Systems with Laser Phase Noise. Journal of Optical Communications, 2017, 38, .	4.7	Ο
68	100 Gbaud 4PAM Link for High Speed Optical Interconnects. , 2017, , .		15
69	Digital mobile fronthaul employing differential pulse code modulation with suppressed quantization noise. Optics Express, 2017, 25, 31921.	3.4	37
70	Direct birefringence and transmission modulation via dynamic alignment of P3HT nanofibers in an advanced opto-fluidic component. Optical Materials Express, 2017, 7, 52.	3.0	4
71	Blind Phase Search with Angular Quantization Noise Mitigation for Efficient Carrier Phase Recovery. Photonics, 2017, 4, 37.	2.0	7
72	Carrier phase estimation in dispersion-unmanaged optical transmission systems. , 2017, , .		1

#	Article	IF	CITATIONS
73	Experimental Evaluation of Impairments in Unrepeatered DP-16QAM Link with Distributed Raman Amplification. Photonics, 2017, 4, 16.	2.0	0
74	High Phase Noise Tolerant Circular-64QAM with Efficient Phase Recovery for Coherent Optical Systems. , 2017, , .		3
75	1.55-μm EML-based DMT Transmission with Nonlinearity-Aware Time Domain Super-Nyquist Image Induced Aliasing. , 2017, , .		7
76	Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature. Optics Letters, 2017, 42, 3646.	3.3	46
77	Analytical Investigations on Carrier Phase Recovery in Dispersion-Unmanaged n-PSK Coherent Optical Communication Systems. Photonics, 2016, 3, 51.	2.0	4
78	Effective Linewidth of Semiconductor Lasers for Coherent Optical Data Links. Photonics, 2016, 3, 39.	2.0	6
79	Equalization Enhanced Phase Noise in Coherent Optical Systems with Digital Pre- and Post-Processing. Photonics, 2016, 3, 12.	2.0	4
80	Two-Stage n-PSK Partitioning Carrier Phase Recovery Scheme for Circular mQAM Coherent Optical Systems. Photonics, 2016, 3, 37.	2.0	4
81	Air-Suspended SU-8 Strip Waveguides With High Refractive Index Contrast. IEEE Photonics Technology Letters, 2016, 28, 1862-1865.	2.5	6
82	Close-form expression of one-tap normalized LMS carrier phase recovery in optical communication systems. , 2016, , .		2
83	Carrier Phase Recovery Algorithms for Coherent Optical Circular mQAM Systems. Journal of Lightwave Technology, 2016, 34, 2717-2723.	4.6	16
84	Dynamic Manipulation of Optical Anisotropy of Suspended Polyâ€3â€hexylthiophene Nanofibers. Advanced Optical Materials, 2016, 4, 1651-1656.	7.3	5
85	Photostable Polymer/Si Nanocrystal Bulk Hybrids with Tunable Photoluminescence. ACS Photonics, 2016, 3, 1575-1580.	6.6	22
86	Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise. , 2016, , .		3
87	Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection. Optics Letters, 2016, 41, 2942.	3.3	2
88	Digital Adaptive Carrier Phase Estimation in Multi-level Phase Shift Keying Coherent Optical Communication Systems. , 2016, , .		3
89	Size Impact of Ordered P3HT Nanofibers on Optical Anisotropy. Macromolecular Chemistry and Physics, 2016, 217, 1089-1095.	2.2	8
90	Microwave synthesis of Y 2 O 3 :Eu 3+ nanophosphors: A study on the influence of dopant concentration and calcination temperature on structural and photoluminescence properties. Journal of Luminescence, 2016, 169, 1-8.	3.1	36

#	Article	IF	CITATIONS
91	High Speed PAM-8 Optical Interconnects with Digital Equalization based on Neural Network. , 2016, , .		29
92	Design of Coherent Optical Systems Impaired by EEPN. , 2016, , .		3
93	Overcoming EEPN in Coherent Transmission Systems. , 2016, , .		1
94	Performance Evaluation of PAM and DMT for Short-range Optical Transmission with High Speed InGaAsP DFB-TWEAM. , 2016, , .		2
95	Interleavers and BCH Codes for Coherent DQPSK Systems With Laser Phase Noise. IEEE Photonics Technology Letters, 2015, 27, 685-688.	2.5	3
96	Field trial over 820 km installed SSMF and its potential Terabit/s superchannel application with up to 57.5-Gbaud DP-QPSK transmission. Optics Communications, 2015, 353, 133-138.	2.1	18
97	Adaptive Boundaries Scheme for Cycle-Slip Mitigation in C-mQAM Coherent Systems. IEEE Photonics Technology Letters, 2015, 27, 2154-2157.	2.5	3
98	Phase noise tolerant carrier recovery scheme for 28 Gbaud circular 16QAM. , 2015, , .		1
99	Laser Rate Equation-Based Filtering for Carrier Recovery in Characterization and Communication. Journal of Lightwave Technology, 2015, 33, 3271-3279.	4.6	12
100	A path to use large linewidth LO in 28 Gbd 16-QAM metro links. , 2015, , .		4
101	Digital signal processing approaches for semiconductor phase noise tolerant coherent transmission systems. Proceedings of SPIE, 2015, , .	0.8	1
102	Impact of local oscillator frequency noise on coherent optical systems with electronic dispersion compensation. Optics Express, 2015, 23, 11221.	3.4	22
103	Comprehensive Study of Equalization-Enhanced Phase Noise in Coherent Optical Systems. Journal of Lightwave Technology, 2015, 33, 4834-4841.	4.6	39
104	Mitigation of EEPN in Coherent Optical Systems With Low-Speed Digital Coherence Enhancement. IEEE Photonics Technology Letters, 2015, 27, 1942-1945.	2.5	9
105	Analytical BER performance in differential n-PSK coherent transmission system influenced by equalization enhanced phase noise. Optics Communications, 2015, 334, 222-227.	2.1	14
106	Optimization of optical gain in composite materials containing Rh6G dye and gold nanoparticles. , 2015, , .		1
107	Phase noise tolerance study in coherent optical circular QAM transmissions with Viterbi-Viterbi carrier phase estimation. Optics Express, 2014, 22, 30579.	3.4	22
108	Phase Noise Influence in Coherent Optical DnPSK Systems with DSP based Dispersion Compensation. Journal of Optical Communications, 2014, 35, .	4.7	5

#	Article	IF	CITATIONS
109	Receiver Sensitivity in Optical and Microwave, Heterodyne and Homodyne Systems. Journal of Optical Communications, 2014, 35, .	4.7	ο
110	Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links. Journal of Lightwave Technology, 2014, 32, 798-804.	4.6	303
111	Dimensioning BCH Codes for Coherent DQPSK Systems With Laser Phase Noise and Cycle Slips. Journal of Lightwave Technology, 2014, 32, 4048-4052.	4.6	9
112	Carrier phase estimation methods in coherent transmission systems influenced by equalization enhanced phase noise. Optics Communications, 2013, 293, 54-60.	2.1	16
113	Study of EEPN mitigation using modified RF pilot and Viterbi-Viterbi based phase noise compensation. Optics Express, 2013, 21, 12351.	3.4	18
114	Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots. Applied Optics, 2013, 52, 105.	1.8	13
115	Quasi Real-Time 230-Gbit/s Coherent Transmission Field Trial over 820 km SSMF Using 57.5-Gbaud Dual-Polarization QPSK. , 2013, , .		2
116	Mitigation of EEPN in Long-Haul n-PSK Coherent Transmission System Using Modified Optical Pilot Carrier. , 2013, , .		2
117	Photostability of lasing process from water solution of Rhodamine 6G with gold nanoparticles. Optics Letters, 2012, 37, 34.	3.3	16
118	EEPN and CD study for coherent optical nPSK and nQAM systems with RF pilot based phase noise compensation. Optics Express, 2012, 20, 8862.	3.4	20
119	Linear birefringence in split-ring resonators. Optics Letters, 2012, 37, 2043.	3.3	Ο
120	Phase Noise Influence in Coherent Optical OFDM Systems with RF Pilot Tone: Digital IFFT Multiplexing and FFT Demodulation. Journal of Optical Communications, 2012, 33, .	4.7	4
121	Phase Noise Influence in Long-range Coherent Optical OFDM Systems with Delay Detection, IFFT Multiplexing and FFT Demodulation. Journal of Optical Communications, 2012, 33, .	4.7	4
122	Lasing From Water Solution of Rhodamine 6G/Gold Nanoparticles: Impact of \${m SiO}_{2}\$-Coating on Metal Surface. IEEE Journal of Quantum Electronics, 2012, 48, 1220-1226.	1.9	8
123	Two-Section Fiber Optic Raman Polarizer. IEEE Journal of Quantum Electronics, 2012, 48, 56-60.	1.9	17
124	Influence of Pre- and Post-compensation of Chromatic Dispersion on Equalization Enhanced Phase Noise in Coherent Multilevel Systems. Journal of Optical Communications, 2011, 32, .	4.7	16
125	Synthesis of tetrahedral quasi-type-II CdSe–CdS core–shell quantum dots. Nanotechnology, 2011, 22, 425202.	2.6	18
126	Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization. Optics Express, 2011, 19, 7756.	3.4	42

#	Article	IF	CITATIONS
127	Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems. Optics Express, 2011, 19, 14487.	3.4	29
128	Two-section fiber optic Raman polarizer for high-speed transmission systems. , 2011, , .		0
129	100Gb/s RZ-OOK transmission through 212km deployed SSMF using monolithically integrated ETDM receiver module. Optics Communications, 2011, 284, 782-786.	2.1	0
130	Phase noise mitigation in coherent transmission system using a pilot carrier. Proceedings of SPIE, 2011,	0.8	2
131	Error-rate Floors in Differential n-level Phase-shift-keying Coherent Receivers employing Electronic Dispersion Equalisation. Journal of Optical Communications, 2011, 32, .	4.7	3
132	Efficiency enhancement in a microcavity solid-state dye laser with Bragg grating reflectors. Open Physics, 2010, 8, .	1.7	0
133	Upconversion assisted self-pulsing in a high-concentration erbium doped fibre laser. Open Physics, 2010, 8, .	1.7	0
134	Raman amplification with reduced polarization impairments in the fibre with tailored spin profile. Open Physics, 2010, 8, .	1.7	0
135	Spatial light modulator as a reconfigurable intracavity dispersive element for tunable lasers. Open Physics, 2010, 8, .	1.7	0
136	Virtually Isotropic Transmission Media With Fiber Raman Amplifier. IEEE Journal of Quantum Electronics, 2010, 46, 1492-1497.	1.9	10
137	Normalized LMS digital filter for chromatic dispersion equalization in 112-Gbit/s PDM-QPSK coherent optical transmission system. Optics Communications, 2010, 283, 963-967.	2.1	22
138	Physical reason behind far-field transmission resonances from U-shaped metallic structures. , 2010, , .		0
139	Chromatic dispersion compensation in coherent transmission system using digital filters. Optics Express, 2010, 18, 16243.	3.4	95
140	Transmission resonances in periodic U-shaped metallic nanostructures. Optics Express, 2010, 18, 17719.	3.4	4
141	Coherence and anticoherence resonance in high-concentration erbium-doped fiber laser. Optics Letters, 2010, 35, 3736.	3.3	14
142	Impact of apexes on the resonance shift in double hole nanocavities. Optics Express, 2010, 18, 193.	3.4	11
143	Refractive index sensor performance based on enhanced transmission of light through perforated metallic films. , 2010, , .		0
144	External near-field resonance in coupled microcavities: mode enhancement and applications. , 2010, , .		0

#	Article	IF	CITATIONS
145	Double nanoholes in a metal film as refractive index sensors. , 2010, , .		Ο
146	External field enhancement in coupled polymer microcavities - New options for integrated photonic components. , 2009, , .		0
147	Modeling of terahertz near-field imaging: Rigorous simulation and antenna approach. , 2009, , .		0
148	Two section fibre approach to suppression of polarization dependent gain in low PMD distributed fibre Raman amplifier. , 2009, , .		0
149	Pump-to-Signal Intensity Noise Transfer as the Mechanism of Self-Pulsing in Erbium Doped Fiber Laser. , 2009, , .		0
150	Upconversion Assisted Auto-Oscillations in Erbium Doped Fiber Laser. , 2009, , .		0
151	Fiber Raman Amplifiers with Suppressed Polarization Impairments. , 2009, , .		1
152	Spun fiber Raman amplifiers with reduced polarization impairments. Optics Express, 2008, 16, 14380.	3.4	16
153	DISTORTION TOLERANCE AGAINST GEOMETRY IMPERFECTIONS IN POLYMERIC MICROCAVITY DYE LASER. Journal of Nonlinear Optical Physics and Materials, 2008, 17, 367-375.	1.8	0
154	Spun Fiber Raman Amplifiers. , 2008, , .		0
155	Thermally induced wavelength tunability of microcavity solid-state dye lasers. Optics Express, 2007, 15, 12971.	3.4	4
156	Polarization-dependent gain and gain fluctuations in a fiber Raman amplifier. Journal of Optics, 2007, 9, 1119-1122.	1.5	6
157	Statistical model of migration-assisted upconversion in a high-concentration erbium-doped fiber amplifier. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 1540.	2.1	16
158	Modeling polarization-dependent gain in fiber Raman amplifiers with randomly varying birefringence. Optics Communications, 2006, 262, 114-119.	2.1	29
159	Influence of the short-range coordination order of erbium ions on excitation migration and upconversion in multicomponent glasses. Optics Letters, 2005, 30, 1258.	3.3	12
160	The impact of pump polarization on the polarization dependence of the Raman gain due to the breaking of a fibreÂs circular symmetry. Journal of Optics, 2004, 6, S72-S76.	1.5	20
161	Suppression of dynamic instabilities in erbium-doped fiber amplifiers with a combined gain control system. Optics Letters, 2002, 27, 1117.	3.3	7
162	Dye photodestruction in a solid-state dye laser with a polymeric gain medium. Applied Optics, 1998, 37, 6449.	2.1	66

#	Article	IF	CITATIONS
163	Excitation back transfer in a statistical model for upconversion in Er-doped fibres. Journal of the European Optical Society-Rapid Publications, 0, 2, .	1.9	7
164	Mode suppression in a microcavity solid-state dye laser. Journal of the European Optical Society-Rapid Publications, 0, 2, .	1.9	6