Yijin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel. Advanced Functional Materials, 2022, 32, 2107182.	14.9	40
2	V ₂ O ₃ /MnS Arrays as Bifunctional Air Electrode for Longâ€Lasting and Flexible Rechargeable Znâ€Air Batteries. Small, 2022, 18, e2104411.	10.0	16
3	Multifunctional Yolk–Shell Structured Magnetic Mesoporous Polydopamine/Carbon Microspheres for Photothermal Therapy and Heterogenous Catalysis. ACS Applied Materials & Interfaces, 2022, 14, 23888-23895.	8.0	14
4	Atomic Fe Dispersed Hierarchical Mesoporous Fe–N–C Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 74-81.	11.2	147
5	Electrochemical reduction of CO ₂ towards multi-carbon products <i>via</i> a two-step process. Reaction Chemistry and Engineering, 2021, 6, 612-628.	3.7	28
6	Electrochemical biomass upgrading on CoOOH nanosheets in a hybrid water electrolyzer. Green Chemistry, 2021, 23, 2525-2530.	9.0	31
7	Mechanism and Kinetics of Methane Oxidation to Methanol Catalyzed by AuPd Nanocatalysts at Low Temperature. ACS Catalysis, 2021, 11, 2837-2845.	11.2	12
8	Can carbon sponge be used as separator in Li metal batteries?. Energy Storage Materials, 2021, 36, 108-114.	18.0	14
9	Nanoscale Chemical and Structural Analysis during <i>In Situ</i> Scanning/Transmission Electron Microscopy in Liquids. ACS Nano, 2021, 15, 10228-10240.	14.6	29
10	Optimizing the Spin States of Mesoporous Co ₃ O ₄ Nanorods through Vanadium Doping for Long-Lasting and Flexible Rechargeable Zn–Air Batteries. ACS Catalysis, 2021, 11, 8097-8103.	11.2	84
11	Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene. Nano Letters, 2021, 21, 5620-5626.	9.1	18
12	Chemical upgrade of carbon monoxide to acetate on an atomically dispersed copper catalyst via CO-insertion. Materials Today Physics, 2021, 19, 100418.	6.0	12
13	SnO ₂ Quantum Dots Enabled Site-Directed Sodium Deposition for Stable Sodium Metal Batteries. Nano Letters, 2021, 21, 816-822.	9.1	46
14	Thermodynamic Regulation of Dendrite-Free Li Plating on Li ₃ Bi for Stable Lithium Metal Batteries. Nano Letters, 2021, 21, 8664-8670.	9.1	25
15	Advances in the Interfacial Assembly of Mesoporous Silica on Magnetite Particles. Angewandte Chemie - International Edition, 2020, 59, 15804-15817.	13.8	45
16	Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries. Energy Storage Materials, 2020, 25, 334-341.	18.0	77
17	Sodium Deposition with a Controlled Location and Orientation for Dendriteâ€Free Sodium Metal Batteries. Advanced Energy Materials, 2020, 10, 2002308.	19.5	69
18	Nanoporous V-Doped Ni ₅ P ₄ Microsphere: A Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH. ACS Applied Materials & Interfaces, 2020, 12, 37092-37099.	8.0	40

Yijin Kang

#	Article	IF	CITATIONS
19	Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors. IScience, 2020, 23, 101396.	4.1	10
20	Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Research, 2020, 13, 2407-2412.	10.4	41
21	Promoting Formation of Oxygen Vacancies in Two-Dimensional Cobalt-Doped Ceria Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 6461-6466.	13.7	168
22	Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Applied Materials Today, 2020, 19, 100620.	4.3	144
23	Hierarchical Mesoporous MXene–NiCoP Electrocatalyst for Water-Splitting. ACS Applied Materials & Interfaces, 2020, 12, 18570-18577.	8.0	137
24	Low-Temperature Molten Salt Synthesis for Ligand-Free Transition Metal Oxide Nanoparticles. ACS Applied Energy Materials, 2020, 3, 3984-3990.	5.1	6
25	Decomposition of Hydrogen Peroxide Catalyzed by AuPd Nanocatalysts during Methane Oxidation to Methanol. ACS Catalysis, 2020, 10, 5115-5123.	11.2	25
26	Exploiting dynamic water structure and structural sensitivity for nanoscale electrocatalyst design. Nano Energy, 2019, 64, 103963.	16.0	30
27	Three-dimensional carbon material as stable host for dendrite-free lithium metal anodes. Electrochimica Acta, 2019, 301, 251-257.	5.2	32
28	Interlayered Dendriteâ€Free Lithium Plating for Highâ€Performance Lithiumâ€Metal Batteries. Advanced Materials, 2019, 31, e1901662.	21.0	78
29	Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nature Catalysis, 2019, 2, 423-430.	34.4	368
30	Catalyst design by scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3764-3769.	7.1	40
31	Phosphorized MXene-Phase Molybdenum Carbide as an Earth-Abundant Hydrogen Evolution Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 7206-7212.	5.1	88
32	Shaping electrocatalysis through tailored nanomaterials. Nano Today, 2016, 11, 587-600.	11.9	133
33	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	12.6	2,376
34	Shape-Controlled Synthesis of Pt Nanocrystals: The Role of Metal Carbonyls. ACS Nano, 2013, 7, 645-653.	14.6	162
35	Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation. Journal of the American Chemical Society, 2013, 135, 1499-1505.	13.7	122
36	Design of Pt–Pd Binary Superlattices Exploiting Shape Effects and Synergistic Effects for Oxygen Reduction Reactions. Journal of the American Chemical Society, 2013, 135, 42-45.	13.7	180

Yijin Kang

#	Article	IF	CITATIONS
37	Heterogeneous Catalysts Need Not Be so "Heterogeneous― Monodisperse Pt Nanocrystals by Combining Shape-Controlled Synthesis and Purification by Colloidal Recrystallization. Journal of the American Chemical Society, 2013, 135, 2741-2747.	13.7	105
38	Highly Active Pt ₃ Pb and Core–Shell Pt ₃ Pb–Pt Electrocatalysts for Formic Acid Oxidation. ACS Nano, 2012, 6, 2818-2825.	14.6	177
39	Synthesis, Shape Control, and Methanol Electro-oxidation Properties of Pt–Zn Alloy and Pt ₃ Zn Intermetallic Nanocrystals. ACS Nano, 2012, 6, 5642-5647.	14.6	273
40	Synthesis and Oxygen Storage Capacity of Twoâ€Dimensional Ceria Nanocrystals. Angewandte Chemie - International Edition, 2011, 50, 4378-4381.	13.8	164
41	Size―and Shapeâ€Selective Synthesis of Metal Nanocrystals and Nanowires Using CO as a Reducing Agent. Angewandte Chemie - International Edition, 2010, 49, 6156-6159.	13.8	195
42	Synthesis and Electrocatalytic Properties of Cubic Mnâ^'Pt Nanocrystals (Nanocubes). Journal of the American Chemical Society, 2010, 132, 7568-7569.	13.7	341