List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 2018, 21, 628-650.	3.0	269
2	Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. Journal of Alloys and Compounds, 2018, 764, 1056-1071.	5.5	219
3	Examination of the Critical Velocity for Deposition of Particles in Cold Spraying. Journal of Thermal Spray Technology, 2006, 15, 212-222.	3.1	187
4	Microstructure and tensile properties of iron parts fabricated by selective laser melting. Optics and Laser Technology, 2014, 56, 451-460.	4.6	170
5	Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Materials Science and Engineering C, 2020, 106, 110289.	7.3	158
6	On high velocity impact of micro-sized metallic particles in cold spraying. Applied Surface Science, 2006, 253, 2852-2862.	6.1	155
7	Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. International Journal of Advanced Manufacturing Technology, 2012, 61, 967-974.	3.0	154
8	Deposition behavior of thermally softened copper particles in cold spraying. Acta Materialia, 2013, 61, 5105-5118.	7.9	150
9	Sensing properties of atmospheric plasma-sprayed WO3 coating for sub-ppm NO2 detection. Sensors and Actuators B: Chemical, 2010, 144, 280-288.	7.8	140
10	Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by selective laser melting. Applied Surface Science, 2016, 378, 142-149.	6.1	137
11	Wear and corrosion resistant performance of thermal-sprayed Fe-based amorphous coatings: A review. Surface and Coatings Technology, 2019, 377, 124896.	4.8	133
12	Numerical simulation of deformation behavior of Al particles impacting on Al substrate and effect of surface oxide films on interfacial bonding in cold spraying. Applied Surface Science, 2007, 253, 5084-5091.	6.1	130
13	Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating. Journal of Thermal Spray Technology, 2006, 15, 206-211.	3.1	127
14	lonic conductivity and its temperature dependence of atmospheric plasma-sprayed yttria stabilized zirconia electrolyte. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 24-30.	3.5	112
15	Mechanical and inÂvitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting. Journal of Alloys and Compounds, 2019, 782, 209-223.	5.5	112
16	Gas Flow, Particle Acceleration, and Heat Transfer in Cold Spray: A review. Journal of Thermal Spray Technology, 2016, 25, 874-896.	3.1	111
17	Significant influence of particle surface oxidation on deposition efficiency, interface microstructure and adhesive strength of cold-sprayed copper coatings. Applied Surface Science, 2010, 256, 4953-4958.	6.1	110
18	Microstructure and strength analysis of eutectic Al-Si alloy in-situ manufactured using selective laser melting from elemental powder mixture. Journal of Alloys and Compounds, 2017, 691, 316-322.	5.5	110

#	Article	IF	CITATIONS
19	Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying. Applied Surface Science, 2007, 254, 517-526.	6.1	103
20	Microstructure and Magnetic Properties of Fe–Ni Alloy Fabricated by Selective Laser Melting Fe/Ni Mixed Powders. Journal of Materials Science and Technology, 2013, 29, 757-760.	10.7	103
21	Effect of high-temperature preheating on the selective laser melting of yttria-stabilized zirconia ceramic. Journal of Materials Processing Technology, 2015, 222, 61-74.	6.3	101
22	Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. Journal of Alloys and Compounds, 2013, 579, 415-421.	5.5	97
23	Deformation behavior of the oxide film on the surface of cold sprayed powder particle. Applied Surface Science, 2012, 259, 294-300.	6.1	96
24	Fabrication and microstructure characterization of selective laserâ€melted FeAl intermetallic parts. Surface and Coatings Technology, 2012, 206, 4704-4709.	4.8	93
25	Modeling Aspects of High Velocity Impact of Particles in Cold Spraying by Explicit Finite Element Analysis. Journal of Thermal Spray Technology, 2009, 18, 921-933.	3.1	92
26	Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology. Journal of Magnetism and Magnetic Materials, 2012, 324, 495-500.	2.3	86
27	Effect of hot isostatic pressing (HIP) on microstructure and mechanical properties of Ti6Al4V alloy fabricated by cold spray additive manufacturing. Additive Manufacturing, 2019, 27, 595-605.	3.0	82
28	Microstructure and mechanical properties of pure copper manufactured by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 789, 139615.	5.6	76
29	Modification of a cold sprayed SiC p /Al5056 composite coating by friction stir processing. Surface and Coatings Technology, 2016, 296, 69-75.	4.8	75
30	Friction and wear behavior of flame-sprayed PEEK coatings. Wear, 2002, 252, 824-831.	3.1	74
31	Selective laser melting commercially pure Ti under vacuum. Vacuum, 2013, 95, 25-29.	3.5	71
32	Microstructure, mechanical property and wear performance of cold sprayed Al5056/SiCp composite coatings: Effect of reinforcement content. Applied Surface Science, 2014, 289, 188-196.	6.1	70
33	Magnetic properties of in-situ synthesized FeNi3 by selective laser melting Fe-80%Ni powders. Journal of Magnetism and Magnetic Materials, 2013, 336, 49-54.	2.3	69
34	Room-temperature nitrogen-dioxide sensors based on ZnO1â^'x coatings deposited by solution precursor plasma spray. Sensors and Actuators B: Chemical, 2017, 242, 102-111.	7.8	65
35	Microstructural evolution and mechanical properties enhancement of a cold-sprayed Cu Zn alloy coating with friction stir processing. Materials Characterization, 2017, 125, 76-82.	4.4	64
36	Investigation of the microstructure and tribological behavior of cold-sprayed tin-bronze-based composite coatings. Applied Surface Science, 2009, 255, 3822-3828.	6.1	63

#	Article	IF	CITATIONS
37	Optimal design of a convergent-barrel cold spray nozzle by numerical method. Applied Surface Science, 2006, 253, 708-713.	6.1	61
38	Characterizations of cold-sprayed Nickel–Alumina composite coating with relatively large Nickel-coated Alumina powder. Surface and Coatings Technology, 2008, 202, 4855-4860.	4.8	61
39	Selective laser melting (SLM) of CX stainless steel: Theoretical calculation, process optimization and strengthening mechanism. Journal of Materials Science and Technology, 2021, 73, 151-164.	10.7	61
40	Pure copper components fabricated by cold spray (CS) and selective laser melting (SLM) technology. Surface and Coatings Technology, 2020, 395, 125936.	4.8	61
41	Fatigue strength improvement of selective laser melted Ti6Al4V using ultrasonic surface mechanical attrition. Materials Research Letters, 2019, 7, 327-333.	8.7	60
42	Metallization of polyether ether ketone (PEEK) by copper coating via cold spray. Surface and Coatings Technology, 2018, 342, 209-219.	4.8	59
43	Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting. Surface and Coatings Technology, 2019, 371, 161-171.	4.8	58
44	Effects of Substrate Hardness and Spray Angle on the Deposition Behavior of Cold-Sprayed Ti Particles. Journal of Thermal Spray Technology, 2014, 23, 76-83.	3.1	57
45	Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 781, 139227.	5.6	57
46	Microstructure evolution and density behavior of CP Ti parts elaborated by Self-developed vacuum selective laser melting system. Applied Surface Science, 2013, 279, 310-316.	6.1	56
47	Cavitation erosion of plasma-sprayed CoMoCrSi coatings. Tribology International, 2016, 102, 429-435.	5.9	56
48	Microstructure and corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings. Surface and Coatings Technology, 2014, 251, 264-275.	4.8	55
49	Deposition and microstructure characterization of atmospheric plasma-sprayed ZnO coatings for NO2 detection. Applied Surface Science, 2010, 256, 5905-5910.	6.1	54
50	On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field. Materials Science and Engineering C, 2017, 70, 405-407.	7.3	53
51	On the role of oxide film's cleaning effect into the metallurgical bonding during cold spray. Materials Letters, 2018, 210, 199-202.	2.6	53
52	Application of robot offline programming in thermal spraying. Surface and Coatings Technology, 2012, 206, 3875-3882.	4.8	51
53	Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings. Journal of the European Ceramic Society, 2017, 37, 5017-5021.	5.7	51
54	In-situ TiB/near α Ti matrix composites manufactured by selective laser melting. Additive Manufacturing, 2016, 11, 1-6.	3.0	50

#	Article	IF	CITATIONS
55	The Effect of Spray Distance and Scanning Step on the Coating Thickness Uniformity in Cold Spray Process. Journal of Thermal Spray Technology, 2014, 23, 354-362.	3.1	49
56	Strong effect of carrier gas species on particle velocity during cold spray processes. Surface and Coatings Technology, 2015, 268, 90-93.	4.8	49
57	Effect of building directions on the surface roughness, microstructure, and tribological properties of selective laser melted Inconel 625. Journal of Materials Processing Technology, 2021, 288, 116878.	6.3	49
58	Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray. Materials Letters, 2015, 138, 143-147.	2.6	48
59	Effects of ceramic particle size on microstructure and the corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings. Surface and Coatings Technology, 2017, 315, 314-325.	4.8	48
60	Selective laser melting of tungsten carbide reinforced maraging steel composite. Additive Manufacturing, 2018, 22, 104-110.	3.0	48
61	Al matrix composites fabricated by solid-state cold spray deposition: A critical review. Journal of Materials Science and Technology, 2021, 86, 20-55.	10.7	48
62	Effect of injection pressure on particle acceleration, dispersion and deposition in cold spray. Computational Materials Science, 2014, 90, 7-15.	3.0	47
63	Role of Mo on tribological properties of atmospheric plasma-sprayed Mo-NiCrBSi composite coatings under dry and oil-lubricated conditions. Journal of Alloys and Compounds, 2017, 727, 841-850.	5.5	47
64	Characterization of the microstructure of a selective laser melting processed Al-50Si alloy: Effect of heat treatments. Materials Characterization, 2017, 130, 243-249.	4.4	47
65	Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite. Vacuum, 2018, 154, 69-74.	3.5	47
66	A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surface and Coatings Technology, 2015, 268, 94-98.	4.8	46
67	Evaluation of the interfacial bonding between particles and substrate in angular cold spray. Materials Letters, 2016, 173, 76-79.	2.6	45
68	APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion. Journal of Alloys and Compounds, 2017, 699, 1095-1103.	5.5	45
69	A novel spiral trajectory for damage component recovery with cold spray. Surface and Coatings Technology, 2017, 309, 719-728.	4.8	44
70	Selective laser melting of WC reinforced maraging steel 300: Microstructure characterization and tribological performance. Surface and Coatings Technology, 2019, 371, 355-365.	4.8	44
71	Microstructure, microhardness and dry friction behavior of cold-sprayed tin bronze coatings. Applied Surface Science, 2007, 254, 1482-1488.	6.1	43
72	Friction and wear behavior of ZrO2–Al2O3 composite coatings deposited by air plasma spraying: Correlation with physical and mechanical properties. Surface and Coatings Technology, 2009, 203, 3235-3242.	4.8	43

#	Article	IF	CITATIONS
73	Study on gas permeation behaviour through atmospheric plasma-sprayed yttria stabilized zirconia coating. Surface and Coatings Technology, 2008, 202, 5055-5061.	4.8	41
74	Deposition features of cold sprayed copper particles on preheated substrate. Surface and Coatings Technology, 2015, 268, 252-256.	4.8	41
75	Microstructure and wear resistance of FeAl/Al2O3 intermetallic composite coating prepared by atmospheric plasma spraying. Surface and Coatings Technology, 2015, 268, 24-29.	4.8	41
76	Effect of Substrate Preheating on Adhesive Strength of SS 316L Cold Spray Coatings. Journal of Thermal Spray Technology, 2016, 25, 123-130.	3.1	41
77	Investigation on the influence of particle preheating temperature on bonding of cold-sprayed nickel coatings. Surface and Coatings Technology, 2017, 318, 99-105.	4.8	41
78	Nanostructured zirconia–30 vol.% alumina composite coatings deposited by atmospheric plasma spraying. Thin Solid Films, 2005, 484, 225-231.	1.8	40
79	Macrosegregation mechanism of primary silicon phase in selective laser melting hypereutectic Al – High Si alloy. Journal of Alloys and Compounds, 2016, 662, 259-262.	5.5	40
80	Effect of Substrate Type on Deposition Behavior and Wear Performance of Ni-Coated Graphite/Al Composite Coatings Deposited by Cold Spraying. Journal of Materials Science and Technology, 2017, 33, 338-346.	10.7	40
81	Micro-nano structured functional coatings deposited by liquid plasma spraying. Journal of Advanced Ceramics, 2020, 9, 517-534.	17.4	39
82	Microstructure, interface characteristics and tribological properties of laser cladded NiCrBSi-WC coatings on PH 13-8 Mo steel. Tribology International, 2021, 157, 106873.	5.9	39
83	Microstructure and properties of Cr2O3 coating deposited by plasma spraying and dry-ice blasting. Surface and Coatings Technology, 2013, 225, 58-65.	4.8	38
84	Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Progress in Organic Coatings, 2009, 66, 248-253.	3.9	37
85	Relationships between in-flight particle characteristics and properties of HVOF sprayed WC-CoCr coatings. Journal of Materials Processing Technology, 2014, 214, 456-461.	6.3	37
86	Cold spray additive manufacturing of Invar 36 alloy: microstructure, thermal expansion and mechanical properties. Journal of Materials Science and Technology, 2021, 72, 39-51.	10.7	37
87	Microstructure and mechanical properties of plasma sprayed nanostructured TiO2–Al composite coatings. Surface and Coatings Technology, 2005, 194, 215-224.	4.8	35
88	Wear Characteristics of Plasma-Sprayed Nanostructured Yttria Partially Stabilized Zirconia Coatings. Journal of Thermal Spray Technology, 2005, 14, 518-523.	3.1	35
89	Improvement of surface properties of SLM parts by atmospheric plasma spraying coating. Applied Surface Science, 2012, 263, 777-782.	6.1	35
90	Steel coating application for engine block bores by Plasma Transferred Wire Arc spraying process. Surface and Coatings Technology, 2015, 268, 115-122.	4.8	35

#	Article	IF	CITATIONS
91	Temperature dependence of microstructure and hardness of vacuum plasma sprayed Cu–Mo composite coatings. Surface and Coatings Technology, 2006, 200, 5682-5686.	4.8	34
92	Cold spray additive manufacturing of metal matrix composites (MMCs) using a novel nano-TiB2-reinforced 7075Al powder. Journal of Alloys and Compounds, 2020, 819, 152962.	5.5	34
93	Synthesis and microstructure observation of titanium carbonitride nanostructured coatings using reactive plasma spraying in atmosphere. Applied Surface Science, 2011, 257, 8722-8727.	6.1	33
94	Microstructural, mechanical and tribological properties of suspension plasma sprayed YSZ/h-BN composite coating. Journal of the European Ceramic Society, 2018, 38, 4512-4522.	5.7	33
95	Phase composition and stability of nanostructured 4.7 wt.% yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying. Surface and Coatings Technology, 2006, 200, 4549-4556.	4.8	32
96	Effect of in-flight particle velocity on the performance of plasma-sprayed YSZ electrolyte coating for solid oxide fuel cells. Surface and Coatings Technology, 2008, 202, 2654-2660.	4.8	32
97	Preparation and characterization of magnesium coating deposited by cold spraying. Journal of Materials Processing Technology, 2012, 212, 100-105.	6.3	32
98	Strengthened Peening Effect on Metallurgical Bonding Formation in Cold Spray Additive Manufacturing. Journal of Thermal Spray Technology, 2019, 28, 769-779.	3.1	32
99	A new approach to simulate coating thickness in cold spray. Surface and Coatings Technology, 2020, 382, 125151.	4.8	32
100	Very low pressure plasma sprayed alumina and yttria-stabilized zirconia thin dense coatings using a modified transferred arc plasma torch. Applied Surface Science, 2011, 258, 1422-1428.	6.1	31
101	Investigation of high temperature oxidation behavior and tribological performance on cold sprayed nickel–alumina composite coating. Surface and Coatings Technology, 2014, 239, 95-101.	4.8	31
102	The effect of heat treatment on microstructure and tensile properties of cold spray Zr base metal glass/Cu composite. Surface and Coatings Technology, 2015, 280, 64-71.	4.8	31
103	Effects of laser remelting process on the microstructure, roughness and microhardness of in-situ cold sprayed hypoeutectic Al-Si coating. Surface and Coatings Technology, 2017, 318, 355-359.	4.8	31
104	Enhanced mechanical properties of Ti6Al4V alloy fabricated by laser additive manufacturing under static magnetic field. Materials Research Letters, 2022, 10, 530-538.	8.7	31
105	Investigation of surface properties and mechanical and tribological behaviors of polyimide based composite coatings. Surface and Coatings Technology, 2013, 235, 603-610.	4.8	30
106	Microstructure and gas sensing properties of solution precursor plasma-sprayed zinc oxide coatings. Materials Research Bulletin, 2015, 63, 67-71.	5.2	30
107	Effect of heat treatment on the microstructure and microhardness of cold-sprayed tin bronze coating. Applied Surface Science, 2007, 253, 5967-5971.	6.1	29
108	In-situ formation of Ni-Al intermetallics-coated graphite/Al composite in a cold-sprayed coating and its high temperature tribological behaviors. Journal of Materials Science and Technology, 2017, 33, 507-515.	10.7	29

#	Article	IF	CITATIONS
109	An investigation on selective laser melting of Al-Cu-Fe-Cr quasicrystal: From single layer to multilayers. Intermetallics, 2017, 86, 51-58.	3.9	29
110	Microstructure evolution and mechanical properties of maraging steel 300 fabricated by cold spraying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 482-493.	5.6	29
111	Three-dimensional simulation of an argon–hydrogen DC non-transferred arc plasma torch. International Journal of Heat and Mass Transfer, 2015, 80, 644-652.	4.8	28
112	Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying. Surface and Coatings Technology, 2013, 232, 290-297.	4.8	27
113	Heterostructured metal oxides-ZnO nanorods films prepared by SPPS route for photodegradation applications. Surface and Coatings Technology, 2019, 375, 670-680.	4.8	27
114	Prediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artiffial neural network. Surface and Coatings Technology, 2019, 378, 124988.	4.8	27
115	Porous architecture and thermal properties of thermal barrier coatings deposited by suspension plasma spray. Surface and Coatings Technology, 2020, 386, 125462.	4.8	27
116	Deposition Features of Ti Coating Using Irregular Powders in Cold Spray. Journal of Thermal Spray Technology, 2014, 23, 984-990.	3.1	26
117	A three-dimensional model of the wire-arc spray process and its experimental validation. Journal of Materials Processing Technology, 2008, 200, 94-105.	6.3	25
118	Effect of in-flight particle characteristics on the coating properties of atmospheric plasma-sprayed 8mol% Y2O3–ZrO2 electrolyte coating studying by artificial neural networks. Surface and Coatings Technology, 2009, 204, 463-469.	4.8	25
119	Study on structural evolution of nanostructured 3mol% yttria stabilized zirconia coatings during low temperature ageing. Journal of the European Ceramic Society, 2009, 29, 2267-2273.	5.7	25
120	Atmospheric reactive plasma sprayed Fe–Al2O3–FeAl2O4 composite coating and its property evaluation. Applied Surface Science, 2011, 257, 10282-10288.	6.1	25
121	Solution precursor plasma-sprayed tungsten oxide coatings for nitrogen dioxide detection. Ceramics International, 2014, 40, 11427-11431.	4.8	25
122	Oxygen-defective ZnO films with various nanostructures prepared via a rapid one-step process and corresponding photocatalytic degradation applications. Journal of Colloid and Interface Science, 2019, 534, 637-648.	9.4	25
123	Effect of heat treatment on the corrosion resistance behavior of selective laser melted Ti6Al4V ELI. Surface and Coatings Technology, 2020, 396, 125955.	4.8	25
124	Ultrasonic cavitation erosion of as-sprayed and laser-remelted yttria stabilized zirconia coatings. Journal of the European Ceramic Society, 2017, 37, 3623-3630.	5.7	24
125	Numerical investigation of transient coating build-up and heat transfer in cold spray. Surface and Coatings Technology, 2017, 326, 355-365.	4.8	24
126	Improvement in the microstructure and property of plasma sprayed metallic, alloy and ceramic coatings by pre-/during-treatment of dry-ice blasting. Surface and Coatings Technology, 2013, 220, 199-203.	4.8	23

#	Article	IF	CITATIONS
127	A novel approach to in-situ produce functionally graded silicon matrix composite materials by selective laser melting. Composite Structures, 2017, 172, 251-258.	5.8	23
128	A novel approach for fabricating Ni-coated FeSiAl soft magnetic composite via cold spraying. Journal of Alloys and Compounds, 2018, 749, 523-533.	5.5	23
129	Cold sprayed WC reinforced maraging steel 300 composites: Microstructure characterization and mechanical properties. Journal of Alloys and Compounds, 2019, 785, 499-511.	5.5	23
130	An Investigation on Temperature Distribution Within the Substrate and Nozzle Wall in Cold Spraying by Numerical and Experimental Methods. Journal of Thermal Spray Technology, 2012, 21, 41-48.	3.1	22
131	Influence of preheating processes on the microstructure of laser glazed YSZ coatings. Ceramics International, 2017, 43, 4606-4611.	4.8	22
132	Solution precursor plasma spray process as an alternative rapid one-step route for the development of hierarchical ZnO films for improved photocatalytic degradation. Ceramics International, 2018, 44, 2085-2092.	4.8	22
133	Effect of environmental pressure on the microstructure of YSZ thermal barrier coating via suspension plasma spraying. Journal of the European Ceramic Society, 2021, 41, 535-543.	5.7	22
134	Finite element modeling of the elastic modulus of thermal barrier coatings. Surface and Coatings Technology, 2013, 220, 170-173.	4.8	21
135	Cold gas dynamic spraying of a novel micro-alloyed copper: Microstructure, mechanical properties. Journal of Alloys and Compounds, 2016, 686, 399-406.	5.5	21
136	Tunable morphologies of ZnO films via the solution precursor plasma spray process for improved photocatalytic degradation performance. Applied Surface Science, 2018, 455, 970-979.	6.1	21
137	Influence of spray trajectories on characteristics of cold-sprayed copper deposits. Surface and Coatings Technology, 2021, 405, 126703.	4.8	21
138	Simulation and Application of a HVOF Process for MCrAlY Thermal Spraying. Journal of Thermal Spray Technology, 2002, 11, 36-43.	3.1	20
139	Study on the Mechanism of Adhesion Improvement Using Dry-Ice Blasting for Plasma-Sprayed Al2O3 Coatings. Journal of Thermal Spray Technology, 2013, 22, 213-220.	3.1	20
140	Fabrication of FeSiB magnetic coatings with improved saturation magnetization by plasma spray and dry-ice blasting. Journal of Alloys and Compounds, 2014, 584, 254-260.	5.5	20
141	Influence of annealing treatment on microstructure and magnetic properties of cold sprayed Ni-coated FeSiAl soft magnetic composite coating. Surface and Coatings Technology, 2019, 374, 476-484.	4.8	20
142	Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors. Ceramics International, 2019, 45, 10722-10732.	4.8	20
143	Corrosion behavior of cold sprayed 7075Al composite coating reinforced with TiB2 nanoparticles. Surface and Coatings Technology, 2020, 404, 126460.	4.8	20
144	Transient thermal analysis and coating formation simulation of thermal spray process by finite difference method. Surface and Coatings Technology, 2006, 200, 4665-4673.	4.8	19

#	Article	IF	CITATIONS
145	Improvement of flame spraying PEEK coating characteristics using lasers. Journal of Materials Processing Technology, 2011, 211, 12-23.	6.3	19
146	Deposition of NiCrBSi coatings by atmospheric plasma spraying and dry-ice blasting: Microstructure and wear resistance. Surface and Coatings Technology, 2015, 268, 36-45.	4.8	19
147	Experimental and numerical investigation of cavitation-induced erosion in thermal sprayed single splats. Ultrasonics Sonochemistry, 2019, 52, 336-343.	8.2	19
148	Stable layer-building strategy to enhance cold-spray-based additive manufacturing. Additive Manufacturing, 2020, 35, 101356.	3.0	19
149	Light assisted room-temperature NO 2 sensors with enhanced performance based on black SnO 1-α @ZnO 1-β @SnO 2-γ nanocomposite coatings deposited by solution precursor plasma spray. Ceramics International, 2017, 43, 5990-5998.	4.8	18
150	Three dimensional dendritic morphology and orientation transition induced by high static magnetic field in directionally solidified Al-10 wt.%Zn alloy. Journal of Materials Science and Technology, 2019, 35, 1587-1592.	10.7	18
151	Fractal Perimeters of Polishing-Induced Pull-Outs Present on Polished Cross Sections of Plasma-Sprayed Yttria-Stabilized Zirconia Coatings. Journal of the American Ceramic Society, 2003, 86, 1906-1910.	3.8	17
152	A Coupled Model Between Robot Trajectories and Thermal History of the Workpiece During Thermal Spray Operation. Journal of Thermal Spray Technology, 2014, 23, 296-303.	3.1	17
153	Effect of Tool Rotation Speed on Microstructure and Microhardness of Friction-Stir-Processed Cold-Sprayed SiCp/Al5056 Composite Coating. Journal of Thermal Spray Technology, 2016, 25, 1357-1364.	3.1	17
154	Influence of Substrate Properties on the Formation of Suspension Plasma Sprayed Coatings. Journal of Thermal Spray Technology, 2018, 27, 73-83.	3.1	17
155	Effect of spray angle on Ni particle deposition behaviour in cold spray. Surface Engineering, 2018, 34, 352-360.	2.2	17
156	A spherical surface coating thickness model for a robotized thermal spray system. Robotics and Computer-Integrated Manufacturing, 2019, 59, 297-304.	9.9	17
157	Highly sensitive ZnO nanoparticles-loaded In2O3 hollow microsphere for detecting ppb-level NO2 at low working temperature. Progress in Natural Science: Materials International, 2020, 30, 469-476.	4.4	17
158	Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting. Applied Surface Science, 2011, 257, 10828-10833.	6.1	16
159	Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application. Journal of Thermal Spray Technology, 2014, 23, 1382-1389.	3.1	16
160	Multi-layered thermal barrier coatings fabricated by plasma-spraying and dry-ice blasting: Microstructure characterization and prolonged lifetime. Surface and Coatings Technology, 2013, 236, 557-567.	4.8	15
161	Preparation of dense silicate electrolyte coating with low pressure plasma spraying and very low pressure plasma spraying for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2013, 223, 36-41.	7.8	15
162	Manufacture of Fe–Al cube part with a sandwich structure by selective laser melting directly from mechanically mixed Fe and Al powders. International Journal of Advanced Manufacturing Technology, 2013, 69, 1323-1330.	3.0	15

#	Article	IF	CITATIONS
163	A novel structured suspension plasma sprayed YSZ-PTFE composite coating with tribological performance improvement. Surface and Coatings Technology, 2019, 358, 108-113.	4.8	15
164	Comparative investigation of microstructure and properties of Ni-coated FeSiAl soft magnetic composite coatings produced by cold spraying and HVOF. Surface and Coatings Technology, 2019, 371, 224-234.	4.8	15
165	Microstructure and magnetic properties of FeSiBCrC soft magnetic alloy manufactured by selective laser melting. Materials Letters, 2021, 290, 129469.	2.6	15
166	Investigation of Impact Behavior of Cold-Sprayed Large Annealed Copper Particles and Characterization of Coatings. Journal of Thermal Spray Technology, 2011, 20, 252-259.	3.1	14
167	Effect of vacuum heat treatment on tensile strength and fracture performance of cold-sprayed Cu-4Cr-2Nb coatings. Applied Surface Science, 2011, 257, 5972-5976.	6.1	14
168	Cavitation erosion of plasma sprayed YSZ coatings produced by feedstocks with different initial sizes. Tribology International, 2017, 111, 226-233.	5.9	14
169	Development of photocatalytically active heterostructured MnO/ZnO and CuO/ZnO films via solution precursor plasma spray process. Surface and Coatings Technology, 2019, 371, 107-116.	4.8	14
170	Microstructure and mechanical deformation behavior of selective laser melted Ti6Al4V ELI alloy porous structures. Materials Letters, 2020, 277, 128366.	2.6	14
171	Microwave sintering of plasma-sprayed yttria stabilized zirconia electrolyte coating. Journal of the European Ceramic Society, 2008, 28, 2529-2538.	5.7	13
172	Thin Yttria-Stabilized Zirconia Coatings Deposited by Low-Energy Plasma Spraying Under Very Low Pressure Condition. Journal of Thermal Spray Technology, 2011, 20, 1118-1124.	3.1	13
173	Microstructure and properties of nanostructured YSZ coating prepared by suspension plasma spraying at low pressure. Surface and Coatings Technology, 2015, 261, 318-326.	4.8	13
174	A novel approach for fabricating a CNT/AlSi composite with the self-aligned nacre-like architecture by cold spraying. Nano Materials Science, 2019, 1, 137-141.	8.8	13
175	Effect of Laser Energy Density on Surface Morphology, Microstructure, and Magnetic Properties of Selective Laser Melted Fe-3wt.% Si Alloys. Journal of Materials Engineering and Performance, 2021, 30, 5020-5030.	2.5	13
176	New Process Implementation to Enhance Cold Spray-Based Additive Manufacturing. Journal of Thermal Spray Technology, 2021, 30, 1284-1293.	3.1	13
177	Significance of in-situ dry-ice blasting on the microstructure, crystallinity and bonding strength of plasma-sprayed hydroxyapatite coatings. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 136-147.	3.1	12
178	Tribological properties of Al/diamond composites produced by cold spray additive manufacturing. Additive Manufacturing, 2020, 36, 101434.	3.0	12
179	Microstructure and tribological property of selective laser melted Fe-Mn-Al-C alloy. Materials Letters, 2020, 270, 127699.	2.6	12
180	Microstructure and Electrical Conductivity of Atmospheric Plasma-Sprayed LSM/YSZ Composite Cathode Materials. Journal of Thermal Spray Technology, 2007, 16, 1005-1010.	3.1	11

#	Article	IF	CITATIONS
181	Improvement of adhesion of plasma-sprayed Al2O3 coatings by using dry-ice blasting. Materials Letters, 2012, 66, 289-291.	2.6	11
182	Effect of Spray Angle on Temperature Distribution within the Metallic Substrate in Cold Spraying. Journal of Thermal Spray Technology, 2013, 22, 983-991.	3.1	11
183	Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting. Journal of Thermal Spray Technology, 2013, 22, 345-351.	3.1	11
184	Impacting Behavior of Large Oxidized Copper Particles in Cold Spraying. Journal of Thermal Spray Technology, 2013, 22, 433-440.	3.1	11
185	Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying. Surface and Coatings Technology, 2019, 371, 312-321.	4.8	11
186	In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Applied Energy Materials, 2019, 2, 8809-8817.	5.1	11
187	Synthesis of carbon nanotube reinforced Al matrix composite coatings via cold spray deposition. Surface and Coatings Technology, 2021, 405, 126676.	4.8	11
188	Bonding behavior of Bi-metal-deposits produced by hybrid cold spray additive manufacturing. Journal of Materials Processing Technology, 2022, 299, 117375.	6.3	11
189	Effect of heat treatment on residual stress and wear resistance of CX stainless steel manufactured by Selective Laser Melting. Procedia CIRP, 2021, 104, 738-743.	1.9	11
190	3D time-dependent numerical simulation for atmospheric plasma spraying. Surface and Coatings Technology, 2019, 371, 344-354.	4.8	10
191	Suppression effect of decarburization by dry-ice blasting on plasma-sprayed steel coatings: Structure, wear performance and magnetic properties. Surface and Coatings Technology, 2014, 253, 44-51.	4.8	9
192	Effect of dry-ice blasting on the deposition behavior of molybdenum particles onto aluminum and stainless steel substrates using plasma spraying: From single splat to coating. Surface and Coatings Technology, 2015, 268, 46-51.	4.8	9
193	Influence of laminated architectures of heterostructured CeO2-ZnO and Fe2O3-ZnO films on photodegradation performances. Surface and Coatings Technology, 2020, 403, 126367.	4.8	9
194	Effect of Static Magnetic Field on the Evolution of Residual Stress and Microstructure of Laser Remelted Inconel 718 Superalloy. Journal of Thermal Spray Technology, 2020, 29, 1410-1423.	3.1	9
195	Implementation of Artificial Neural Networks for Forecasting the HVOF Spray Process and HVOF Sprayed Coatings. Journal of Thermal Spray Technology, 2021, 30, 1329-1343.	3.1	9
196	Application of External Axis in Robot-Assisted Thermal Spraying. Journal of Thermal Spray Technology, 2012, 21, 1203-1215.	3.1	8
197	In Situ Synthesis of FeAl Dense Coatings by Very Low Pressure Reactive Plasma Spraying. Journal of Thermal Spray Technology, 2013, 22, 90-95.	3.1	8
198	Nozzle Mounting Method Optimization Based on Robot Kinematic Analysis. Journal of Thermal Spray Technology, 2016, 25, 1138-1148.	3.1	8

#	Article	IF	CITATIONS
199	Deposition and characterization of WC-Co hard-metal coatings by high velocity oxy-fuel process combined with dry-ice blasting. International Journal of Refractory Metals and Hard Materials, 2017, 64, 151-159.	3.8	8
200	Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings. Coatings, 2018, 8, 122.	2.6	8
201	Parametric Analysis and Modeling for the Porosity Prediction in Suspension Plasma-Sprayed Coatings. Journal of Thermal Spray Technology, 2020, 29, 51-59.	3.1	8
202	Description and Prediction of Multi-layer Profile in Cold Spray Using Artificial Neural Networks. Journal of Thermal Spray Technology, 2021, 30, 1453-1463.	3.1	8
203	Neural Computation to Estimate Heat Flux in an Atmospheric Plasma Spray Process. Heat Transfer Engineering, 2005, 26, 65-72.	1.9	7
204	Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats. Journal of Thermal Spray Technology, 2013, 22, 61-68.	3.1	7
205	Effect of the deviation of the current density profile center on the three-dimensional non-transferred arc plasma torch. Computers and Fluids, 2015, 114, 163-171.	2.5	7
206	Effects of substrate heat accumulation on the cold sprayed Ni coating quality: Microstructure evolution and tribological performance. Surface and Coatings Technology, 2019, 371, 185-193.	4.8	7
207	Evaluation of nano/submicro pores in suspension plasma sprayed YSZ coatings. Surface and Coatings Technology, 2019, 378, 125001.	4.8	7
208	SiCp/Al5056 Composite Coatings Applied to A Magnesium Substrate by Cold Gas Dynamic Spray Method for Corrosion Protection. Coatings, 2020, 10, 325.	2.6	7
209	Effects of Static Magnetic Field on the Microstructure of Selective Laser Melted Inconel 625 Superalloy: Numerical and Experiment Investigations. Metals, 2021, 11, 1846.	2.3	7
210	Effect of feedstock powder characteristics on microstructure and mechanical properties of lanthanum silicate coatings deposited by atmospheric plasma spraying. Applied Surface Science, 2008, 254, 5548-5551.	6.1	6
211	Microstructure and magnetic properties of atmospheric plasma sprayed Fe–40Al coating obtained from nanostructured powders. Applied Physics A: Materials Science and Processing, 2013, 113, 787-792.	2.3	6
212	Oxidation Behavior of Titanium Carbonitride Coating Deposited by Atmospheric Plasma Spray Synthesis. Journal of Thermal Spray Technology, 2017, 26, 1701-1707.	3.1	6
213	Deep deoxidization from liquid iron by hydrogen plasma arc melting. International Journal of Hydrogen Energy, 2018, 43, 12153-12157.	7.1	6
214	Preparation and characterization of aluminum-based coatings deposited by very low-pressure plasma spray. Surface and Coatings Technology, 2019, 380, 125034.	4.8	6
215	Experiments, Statistical Analysis, and Modeling to Evaluate the Porosity Influence in SPS Coatings. Journal of Thermal Spray Technology, 2019, 28, 76-86.	3.1	6
216	Selective laser melting of elemental powder blends for fabrication of homogeneous bulk material of near-eutectic Ni‒Sn composition. Additive Manufacturing, 2020, 34, 101261.	3.0	6

#	Article	IF	CITATIONS
217	Novel liquid fuel HVOF torches fueled with ethanol: relationships between in-flight particle characteristics and properties of WC-10Co-4Cr coatings. Surface and Coatings Technology, 2021, 408, 126805.	4.8	6
218	In-situ nitrogen strengthening of selective laser melted Ti6Al4V with superior mechanical performance. Additive Manufacturing, 2021, 46, 102142.	3.0	6
219	On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy. Additive Manufacturing, 2022, 51, 102605.	3.0	6
220	Microstructure evolution and mechanical properties of laser additive manufactured Ti6Al4V alloy under nitrogen-argon reactive atmosphere. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 841, 143076.	5.6	6
221	Dielectric properties of Al2O3 coatings deposited via atmospheric plasma spraying and dry-ice blasting correlated with microstructural characteristics. Applied Physics A: Materials Science and Processing, 2015, 118, 283-290.	2.3	5
222	Formation mechanisms of in-situ Al based intermetallic coatings manufactured by very-low pressure plasma spraying. Surface and Coatings Technology, 2018, 334, 300-304.	4.8	5
223	Characterizations of Composite Titanium Nitride Coatings Deposited by Very Low-Pressure Plasma Spraying. Journal of Thermal Spray Technology, 2019, 28, 265-272.	3.1	5
224	Performance of plasma-sprayed CuNiIn coatings and Mo coatings subjected to fretting fatigue. Nano Materials Science, 2020, 2, 140-150.	8.8	5
225	Oxygen-deficient Co3O4 submicron porous sphere films as highly active supsercapacitor electrodes. Surface and Coatings Technology, 2021, 405, 126513.	4.8	5
226	Dense nanostructured YSZ coating prepared by low-pressure suspension plasma spraying: Atmosphere control and deposition mechanism. Surface and Coatings Technology, 2021, 416, 127175.	4.8	5
227	Effect of annealing treatment on microstructure and mechanical properties of cold sprayed TiB2/AlSi10Mg composites. Surfaces and Interfaces, 2021, 26, 101341.	3.0	5
228	Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun. Applied Physics A: Materials Science and Processing, 2011, 105, 991-996.	2.3	4
229	Laser densification of organic coating: Effects of laser wavelength, operating parameters and substrate properties. Surface and Coatings Technology, 2012, 206, 3526-3533.	4.8	4
230	THERMAL SHOCK PROPERTIES OF YTTRIA-STABILIZED ZIRCONIA COATINGS DEPOSITED USING LOW-ENERGY VERY LOW PRESSURE PLASMA SPRAYING. Surface Review and Letters, 2015, 22, 1550061.	1.1	4
231	Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy. Materials Today Communications, 2022, 30, 103095.	1.9	4
232	Optimization of a Rotating Twin Wire-Arc Spray Gun. Journal of Thermal Spray Technology, 2007, 16, 783-790.	3.1	3
233	Effect of Heat Treatment Temperature on Performance of Plasma-Sprayed Apatite-Lanthanum Silicate Coatings as Electrolytes for IT-SOFC. Journal of Thermal Spray Technology, 2012, 21, 1257-1262.	3.1	3
234	Effect of Dry-Ice Blasting on Structure and Magnetic Properties of Plasma-Sprayed Fe-40Al Coating from Nanostructured Powders. Journal of Thermal Spray Technology, 2014, 23, 227-235.	3.1	3

#	Article	IF	CITATIONS
235	Influence of Laser Glazing on the Characterization of Plasma-Sprayed YSZ Coatings. Journal of Thermal Spray Technology, 2017, 26, 93-99.	3.1	3
236	Deposition of hollow sphere In ₂ O ₃ coatings by liquid flame spray. Surface Engineering, 2020, 36, 1121-1127.	2.2	3
237	Characterization of Optical Fibers Directly Embedded on Metal Using a Particle Spray-Based Method. IEEE Sensors Journal, 2020, 20, 6414-6421.	4.7	3
238	Dynamic self-optimization of hierarchical NiAl architecture catalysing oxygen evolution reaction in alkaline water electrolysis. Applied Materials Today, 2022, 28, 101526.	4.3	3
239	VLPPS: An Emerging Process to Create Well-Defined Components by Additive Manufacturing. Journal of Thermal Spray Technology, 2019, 28, 255-264.	3.1	2
240	Effect of Gun Current of APS on Microstructure of Apatite-type Lanthanum Silicate (ATLS) Electrolyte Coatings. ECS Transactions, 2009, 25, 1809-1816.	0.5	1
241	Nitrogen species in a thermal plasma under very low pressure (150 Pa): Application to reactive plasma spraying. Ceramics International, 2021, 47, 30030-30038.	4.8	1
242	Synthesis of Lanthanum Silicates Electrolyte for Intermediate Temperature SOFC. ECS Transactions, 2007, 7, 2351-2355.	0.5	0
243	The Influence of Sintering Time of Feedstock Powders on the Electrical Properties of La10(SiO4)6O3 Electrolyte Coatings. ECS Transactions, 2011, 35, 1225-1233.	0.5	0