JesÃ^os Rojo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132403/publications.pdf

Version: 2024-02-01

35 papers	901 citations	19 h-index	477307 29 g-index
36	36	36	885
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment, 2015, 538, 672-682.	8.0	89
2	Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environmental Research, 2017, 155, 219-227.	7.5	85
3	Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. International Journal of Biometeorology, 2017, 61, 335-348.	3.0	66
4	Near-ground effect of height on pollen exposure. Environmental Research, 2019, 174, 160-169.	7.5	58
5	AeRobiology: The computational tool for biological data in the air. Methods in Ecology and Evolution, 2019, 10, 1371-1376.	5.2	57
6	Spatiotemporal analysis of olive flowering using geostatistical techniques. Science of the Total Environment, 2015, 505, 860-869.	8.0	49
7	An operational robotic pollen monitoring network based on automatic image recognition. Environmental Research, 2020, 191, 110031.	7.5	48
8	Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Science of the Total Environment, 2016, 551-552, 73-82.	8.0	38
9	Effects of future climate change on birch abundance and their pollen load. Global Change Biology, 2021, 27, 5934-5949.	9.5	33
10	Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment, 2016, 188, 130.	2.7	30
11	Prediction of airborne pollen concentrations for the plane tree as a tool for evaluating allergy risk in urban green areas. Landscape and Urban Planning, 2019, 189, 285-295.	7.5	29
12	Impact of Climate Change on Olive Crop Production in Italy. Atmosphere, 2020, 11, 595.	2.3	28
13	Standardised index for measuring atmospheric grass-pollen emission. Science of the Total Environment, 2018, 612, 180-191.	8.0	27
14	Flower and pollen production in the $\hat{a}\in Cornicabra\hat{a}\in M$ olive (Olea europaea L.) cultivar and the influence of environmental factors. Trees - Structure and Function, 2015, 29, 1235-1245.	1.9	26
15	Land-Use and Height of Pollen Sampling Affect Pollen Exposure in Munich, Germany. Atmosphere, 2020, 11, 145.	2.3	26
16	Consequences of climate change on airborne pollen in Bavaria, Central Europe. Regional Environmental Change, 2021, 21, 1.	2.9	26
17	Effects of topography and crown-exposure on olive tree phenology. Trees - Structure and Function, 2014, 28, 449-459.	1.9	24
18	Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany. Science of the Total Environment, 2019, 690, 1299-1309.	8.0	22

#	Article	IF	Citations
19	Impact of Plane Tree Abundance on Temporal and Spatial Variations in Pollen Concentration. Forests, 2020, 11, 817.	2.1	22
20	Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination. Forests, 2020, 11, 835.	2.1	18
21	Models for forecasting the flowering ofÂCornicabra olive groves. International Journal of Biometeorology, 2015, 59, 1547-1556.	3.0	16
22	Methods for interpolating missing data in aerobiological databases. Environmental Research, 2021, 200, 111391.	7.5	13
23	Dynamics and behaviour of airborne Quercus pollen in central Iberian Peninsula. Aerobiologia, 2013, 29, 419-428.	1.7	9
24	Comprehensive analysis of different adhesives in aerobiological sampling using optical microscopy and high-throughput DNA sequencing. Journal of Environmental Management, 2019, 240, 441-450.	7.8	9
25	Environmental drivers of the seasonal exposure to airborne Alternaria spores in Spain. Science of the Total Environment, 2022, 823, 153596.	8.0	9
26	Predicting the Olea pollen concentration with a machine learning algorithm ensemble. International Journal of Biometeorology, 2021, 65, 541-554.	3.0	8
27	Meteorological factors driving airborne grass pollen concentration in central Iberian Peninsula. Aerobiologia, 2020, 36, 527-540.	1.7	7
28	Airborne pollen of allergenic herb species in Toledo (Spain). Environmental Monitoring and Assessment, 2013, 185, 335-346.	2.7	5
29	Variations in airborne pollen in central and south-western Spain in relation to the distribution of potential sources. Grana, 2017, 56, 228-239.	0.8	5
30	La Mancha. Plant and Vegetation, 2017, , 83-142.	0.6	4
31	The effects of climate change on the flowering phenology of alder trees in southwestern Europe. Mediterranean Botany, 0, 42, e67360.	0.9	4
32	Causes of increased pollen exposure during Saharan-Sahel dust intrusions. Environmental Pollution, 2021, 284, 117441.	7.5	4
33	Pinus Pollen Emission Patterns in Different Bioclimatic Areas of the Iberian Peninsula. Forests, 2021, 12, 688.	2.1	3
34	Halo-nitrophilous scrub species and their relationship to the atmospheric concentration of allergenic pollen: case study of the Mediterranean saltbush (Atriplex halimusL., Amaranthaceae). Plant Biosystems, 2019, 153, 98-107.	1.6	2
35	Localisation of Pollen Grains in Digitised Real Daily Airborne Samples. Lecture Notes in Computer Science, 2015, , 348-357.	1.3	2