
Christoph Vorburger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defensive Symbionts and the Evolution of Parasitoid Host Specialization. Annual Review of Entomology, 2022, 67, 329-346.	11.8	10
2	Parasite DNA detection in water samples enhances crayfish plague monitoring in asymptomatic invasive populations. Biological Invasions, 2022, 24, 281-297.	2.4	5
3	Bottomâ€up effect of host protective symbionts on parasitoid diversity: Limited evidence from two field experiments. Journal of Animal Ecology, 2022, 91, 643-654.	2.8	1
4	Similar cost of <i>Hamiltonella defensa</i> in experimental and natural aphidâ€endosymbiont associations. Ecology and Evolution, 2022, 12, e8551.	1.9	7
5	Gated Communities: Inter- and Intraspecific Diversity of Endosymbionts Across Four Sympatric Aphid Species. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	8
6	Quantitative trait locus analysis of parasitoid counteradaptation to symbiont-conferred resistance. Heredity, 2021, 127, 219-232.	2.6	4
7	Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics, 2021, 22, 449.	2.8	10
8	Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists. Scientific Reports, 2021, 11, 19559.	3.3	11
9	Positive association between the diversity of symbionts and parasitoids of aphids in field populations. Ecosphere, 2021, 12, e03355.	2.2	7
10	Strong genotypeâ€byâ€genotype interactions between aphidâ€defensive symbionts and parasitoids persist across different biotic environments. Journal of Evolutionary Biology, 2021, 34, 1944-1953.	1.7	5
11	Parasitoids as drivers of symbiont diversity in an insect host. Ecology Letters, 2020, 23, 1232-1241.	6.4	16
12	Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics, 2020, 21, 376.	2.8	19
13	Prior adaptation of parasitoids improves biological control of symbiontâ€protected pests. Evolutionary Applications, 2020, 13, 1868-1876.	3.1	16
14	On biological evolution and environmental solutions. Science of the Total Environment, 2020, 724, 138194.	8.0	9
15	Horizontal Transmission of the Heritable Protective Endosymbiont Hamiltonella defensa Depends on Titre and Haplotype. Frontiers in Microbiology, 2020, 11, 628755.	3.5	11
16	A Novel RNA Virus in the Parasitoid Wasp Lysiphlebus fabarum: Genomic Structure, Prevalence, and Transmission. Viruses, 2020, 12, 59.	3.3	7
17	Validation of an eDNA-based method for the detection of wildlife pathogens in water. Diseases of Aquatic Organisms, 2020, 141, 171-184.	1.0	20
18	Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Molecular Ecology, 2019, 28, 5330-5346.	3.9	24

#	Article	IF	CITATIONS
19	Mapping of Multiple Complementary Sex Determination Loci in a Parasitoid Wasp. Genome Biology and Evolution, 2019, 11, 2954-2962.	2.5	10
20	Evolutionary costs and benefits of infection with diverse strains of <i>Spiroplasma</i> in pea aphids*. Evolution; International Journal of Organic Evolution, 2019, 73, 1466-1481.	2.3	27
21	Estimating costs of aphid resistance to parasitoids conferred by a protective strain of the bacterial endosymbiont <i>Regiella insecticola</i> . Entomologia Experimentalis Et Applicata, 2019, 167, 252-260.	1.4	14
22	Diversity begets diversity: do parasites promote variation in protective symbionts?. Current Opinion in Insect Science, 2019, 32, 8-14.	4.4	18
23	The role of defensive symbionts in host–parasite coevolution. Biological Reviews, 2018, 93, 1747-1764.	10.4	82
24	Defensive symbionts mediate species coexistence in phytophagous insects. Functional Ecology, 2018, 32, 1057-1064.	3.6	10
25	Symbiont-conferred resistance to parasitoids in aphids – Challenges for biological control. Biological Control, 2018, 116, 17-26.	3.0	40
26	Rapid evolution of symbiontâ€mediated resistance compromises biological control of aphids by parasitoids. Evolutionary Applications, 2018, 11, 220-230.	3.1	28
27	Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat. Journal of Evolutionary Biology, 2017, 30, 762-772.	1.7	8
28	Faithful vertical transmission but ineffective horizontal transmission of bacterial endosymbionts during sexual reproduction of the black bean aphid, <i>Aphis fabae</i> . Ecological Entomology, 2017, 42, 202-209.	2.2	13
29	The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid <i><scp>A</scp>phis fabae</i> . Physiological Entomology, 2017, 42, 125-133.	1.5	18
30	Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution; International Journal of Organic Evolution, 2017, 71, 2599-2617.	2.3	63
31	Postglacial recolonizations, watershed crossings and human translocations shape the distribution of chub lineages around the Swiss Alps. BMC Evolutionary Biology, 2016, 16, 185.	3.2	4
32	Are aphid parasitoids locally adapted to the prevalence of defensive symbionts in their hosts?. BMC Evolutionary Biology, 2016, 16, 271.	3.2	37
33	Wing shape as a taxonomic trait: separating genetic variation from host-induced plasticity in aphid parasitoids. Zoological Journal of the Linnean Society, 2016, , .	2.3	2
34	Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment. Evolutionary Applications, 2016, 9, 394-408.	3.1	60
35	River fragmentation and fish population structure: a comparison of three Swiss midland rivers. Freshwater Science, 2016, 35, 689-700.	1.8	12
36	Bacterial endosymbionts protect aphids in the field and alter parasitoid community composition. Ecology, 2016, 97, 1712-1723.	3.2	56

#	Article	IF	CITATIONS
37	Genetic and morphological variation in sexual and asexual parasitoids of the genus Lysiphlebus – an apparent link between wing shape and reproductive mode. BMC Evolutionary Biology, 2015, 15, 5.	3.2	13
38	Cheaper is not always worse: strongly protective isolates of a defensive symbiont are less costly to the aphid host. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142333.	2.6	58
39	Symbiontâ€conferred protection against Hymenopteran parasitoids in aphids: how general is it?. Ecological Entomology, 2015, 40, 85-93.	2.2	67
40	Sugarâ€feeding behaviour and longevity of <scp>E</scp> uropean <i><scp>C</scp>ulicoides</i> biting midges. Medical and Veterinary Entomology, 2015, 29, 17-25.	1.5	14
41	Thelytoky and Sex Determination in the Hymenoptera: Mutual Constraints. Sexual Development, 2014, 8, 50-58.	2.0	13
42	A set of new and cross-amplifying microsatellite loci for conservation genetics of the endangered stone crayfish (Austropotamobius torrentium). Conservation Genetics Resources, 2014, 6, 629-631.	0.8	6
43	The Praon dorsale–yomenae s.str. complex (Hymenoptera, Braconidae, Aphidiinae): Species discrimination using geometric morphometrics and molecular markers with description of a new species. Zoologischer Anzeiger, 2014, 253, 270-282.	0.9	13
44	Cover Caption. Insect Science, 2014, 21, i-i.	3.0	69
45	EXPERIMENTAL EVOLUTION OF PARASITOID INFECTIVITY ON SYMBIONT-PROTECTED HOSTS LEADS TO THE EMERGENCE OF GENOTYPE SPECIFICITY. Evolution; International Journal of Organic Evolution, 2014, 68, 1607-1616.	2.3	69
46	Biased Transmission of Sex Chromosomes in the Aphid Myzus persicae Is Not Associated with Reproductive Mode. PLoS ONE, 2014, 9, e116348.	2.5	3
47	Host specialization of parasitoids and their hyperparasitoids on a pair of syntopic aphid species. Bulletin of Entomological Research, 2013, 103, 530-537.	1.0	6
48	<i>Lysiphlebus orientalis</i> (Hymenoptera, Braconidae), a new invasive aphid parasitoid in Europe – evidence from molecular markers. Bulletin of Entomological Research, 2013, 103, 451-457.	1.0	21
49	Geographic structure with no evidence for host-associated lineages in European populations of Lysiphlebus testaceipes, an introduced biological control agent. Biological Control, 2013, 66, 150-158.	3.0	16
50	Identification of Two Cryptic Species within the <i>Praon abjectum</i> Group (Hymenoptera:) Tj ETQq0 0 0 rgB1 Entomological Society of America, 2013, 106, 170-180.	/Overlock 2.5	10 Tf 50 227 26
51	Genotypeâ€byâ€genotype specificity remains robust to average temperature variation in an aphid/endosymbiont/parasitoid system. Journal of Evolutionary Biology, 2013, 26, 1603-1610.	1.7	47
52	Comparing constitutive and induced costs of symbiont onferred resistance to parasitoids in aphids. Ecology and Evolution, 2013, 3, 706-713.	1.9	71
53	Effects of Heat Shock on Resistance to Parasitoids and on Life History Traits in an Aphid/Endosymbiont System. PLoS ONE, 2013, 8, e75966.	2.5	16
54	Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biology Letters, 2012, 8, 613-615.	2.3	158

Christoph Vorburger

#	Article	IF	CITATIONS
55	Genomic basis of endosymbiont-conferred protection against an insect parasitoid. Genome Research, 2012, 22, 106-114.	5.5	91
56	Modeling the Ecology of Symbiont-Mediated Protection against Parasites. American Naturalist, 2012, 179, 595-605.	2.1	39
57	Strong specificity in the interaction between parasitoids and symbiontâ€protected hosts. Journal of Evolutionary Biology, 2012, 25, 2369-2375.	1.7	69
58	Development, specificity and sublethal effects of symbiont onferred resistance to parasitoids in aphids. Functional Ecology, 2012, 26, 207-215.	3.6	106
59	Influence of vermicompost and cucumber cultivar on population growth of <i>Aphis gossypii</i> Glover. Journal of Applied Entomology, 2012, 136, 568-575.	1.8	11
60	On Genetic Specificity in Symbiont-Mediated Host-Parasite Coevolution. PLoS Computational Biology, 2012, 8, e1002633.	3.2	42
61	Only helpful when required: a longevity cost of harbouring defensive symbionts. Journal of Evolutionary Biology, 2011, 24, 1611-1617.	1.7	153
62	Climate effects on life cycle variation and population genetic architecture of the black bean aphid, Aphis fabae. Molecular Ecology, 2011, 20, 4165-4181.	3.9	33
63	CONTAGIOUS PARTHENOGENESIS, AUTOMIXIS, AND A SEX DETERMINATION MELTDOWN. Evolution; International Journal of Organic Evolution, 2011, 65, 501-511.	2.3	31
64	Single-Locus Recessive Inheritance of Asexual Reproduction in a Parasitoid Wasp. Current Biology, 2011, 21, 433-437.	3.9	77
65	Invasiveness of an introduced species: the role of hybridization and ecological constraints. Biological Invasions, 2011, 13, 1901-1915.	2.4	12
66	Evolution of reproductive mode variation and host associations in a sexual-asexual complex of aphid parasitoids. BMC Evolutionary Biology, 2011, 11, 348.	3.2	53
67	Hostâ€associated differentiation and evidence for sexual reproduction in Iranian populations of the cotton aphid, <i>Aphis gossypii</i> . Entomologia Experimentalis Et Applicata, 2010, 134, 191-199.	1.4	12
68	Ample genetic variation but no evidence for genotype specificity in an all-parthenogenetic host–parasitoid interaction. Journal of Evolutionary Biology, 2010, 23, 578-585.	1.7	35
69	A strain of the bacterial symbiont <i>Regiella insecticola</i> protects aphids against parasitoids. Biology Letters, 2010, 6, 109-111.	2.3	217
70	Host genotype affects the relative success of competing lines of aphid parasitoids under superparasitism. Ecological Entomology, 2010, 35, 77-83.	2.2	19
71	GENOTYPIC VARIATION AND THE ROLE OF DEFENSIVE ENDOSYMBIONTS IN AN ALL-PARTHENOGENETIC HOST-PARASITOID INTERACTION. Evolution; International Journal of Organic Evolution, 2009, 63, 1439-1450.	2.3	129
72	Aphid genotypes vary in their response to the presence of fungal endosymbionts in host plants. Journal of Evolutionary Biology, 2009, 22, 1775-1780.	1.7	11

#	Article	IF	CITATIONS
73	Masked Damage: Mutational Load in Hemiclonal Water Frogs. , 2009, , 433-446.		11
74	Comparative population growth parameters of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on different common bean cultivars. Systematic and Applied Acarology, 2009, 12, 83.	0.5	21
75	Genetic covariation between effectiveness and cost of defence in aphids. Biology Letters, 2008, 4, 674-676.	2.3	13
76	Limited scope for maternal effects in aphid defence against parasitoids. Ecological Entomology, 2008, 33, 189-196.	2.2	26
77	Genetic variation and covariation of aphid life-history traits across unrelated host plants. Bulletin of Entomological Research, 2008, 98, 543-553.	1.0	13
78	Genetic variation and covariation of susceptibility to parasitoids in the aphid <i>Myzus persicae</i> : no evidence for trade-offs. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1089-1094.	2.6	64
79	Strong parasitoid-mediated selection in experimental populations of aphids. Biology Letters, 2007, 3, 667-669.	2.3	34
80	Microsatellite DNA markers for the aphid parasitoid Lysiphlebus fabarum and their applicability to related species. Molecular Ecology Notes, 2007, 7, 1080-1083.	1.7	19
81	Temporal dynamics of genotypic diversity reveal strong clonal selection in the aphid Myzus persicae. Journal of Evolutionary Biology, 2006, 19, 97-107.	1.7	67
82	When log-dwellers meet loggers: impacts of forest fragmentation on two endemic log-dwelling beetles in southeastern Australia. Molecular Ecology, 2006, 15, 1481-1492.	3.9	38
83	Geographic Parthenogenesis: Recurrent Patterns Down Under. Current Biology, 2006, 16, R641-R643.	3.9	9
84	POSITIVE GENETIC CORRELATIONS AMONG MAJOR LIFE-HISTORY TRAITS RELATED TO ECOLOGICAL SUCCESS IN THE APHID MYZUS PERISICAE. Evolution; International Journal of Organic Evolution, 2005, 59, 1006-1015.	2.3	43
85	POSITIVE GENETIC CORRELATIONS AMONG MAJOR LIFE-HISTORY TRAITS RELATED TO ECOLOGICAL SUCCESS IN THE APHID MYZUS PERSICAE. Evolution; International Journal of Organic Evolution, 2005, 59, 1006.	2.3	2
86	Positive genetic correlations among major life-history traits related to ecological success in the aphid Myzus persicae. Evolution; International Journal of Organic Evolution, 2005, 59, 1006-15.	2.3	38
87	Cold tolerance in obligate and cyclical parthenogens of the peach-potato aphid, Myzus persicae. Ecological Entomology, 2004, 29, 498-505.	2.2	17
88	A genetic mechanism of species replacement in European waterfrogs?. Conservation Genetics, 2003, 4, 141-155.	1.5	46
89	Environmentally related patterns of reproductive modes in the aphid Myzus persicae and the predominance of two †superclones' in Victoria, Australia. Molecular Ecology, 2003, 12, 3493-3504.	3.9	155
90	Explaining the coexistence of asexuals with their sexual progenitors: no evidence for general-purpose genotypes in obligate parthenogens of the peach-potato aphid, Myzus persicae. Ecology Letters, 2003, 6, 1091-1098.	6.4	56

#	Article	IF	CITATIONS
91	Mark-recapture estimates of daily survival rates of two damselflies (Coenagrion puella and Ischnura) Tj ETQq1	1 0.784314 1.0	rgBT/Overloc
92	Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes. Ecology Letters, 2001, 4, 628-636.	6.4	37
93	Heterozygous fitness effects of clonally transmitted genomes in waterfrogs. Journal of Evolutionary Biology, 2001, 14, 602-610.	1.7	22
94	FIXATION OF DELETERIOUS MUTATIONS IN CLONAL LINEAGES: EVIDENCE FROM HYBRIDOGENETIC FROGS. Evolution; International Journal of Organic Evolution, 2001, 55, 2319-2332.	2.3	66
95	FIXATION OF DELETERIOUS MUTATIONS IN CLONAL LINEAGES: EVIDENCE FROM HYBRIDOGENETIC FROGS. Evolution; International Journal of Organic Evolution, 2001, 55, 2319.	2.3	2
96	Forum: Genomic imprinting or mutation and interclonal selection in triploid hybrid frogs? A comment on Tunner. Amphibia - Reptilia, 2001, 22, 263-265.	0.5	4
97	Mark-recapture estimates of daily survival rates of two damselflies (<i>Coenagrion puella</i> and) Tj ETQq1 1 G).784314 rg 1.0	gBT/Overlock 29
98	Aggression and competition for shelter between a native and an introduced crayfish in Europe. Freshwater Biology, 1999, 42, 111-119.	2.4	121
99	Variation and covariation of life history traits in aphids are related to infection with the facultative bacterial endosymbiont Hamiltonella defensa. Biological Journal of the Linnean Society, 0, 100, 237-247.	1.6	25
100	Phylogeography and Cryptic Species Structure of a Locally Adapted Parasite in New Zealand. Molecular Ecology, 0, , .	3.9	3