
Kasper Hoebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132242/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature, 2005, 434, 525-529.	13.7	1,015
2	Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3516-3521.	3.3	837
3	CD36 is a sensor of diacylglycerides. Nature, 2005, 433, 523-527.	13.7	779
4	The interface between innate and adaptive immunity. Nature Immunology, 2004, 5, 971-974.	7.0	776
5	The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nature Immunology, 2006, 7, 156-164.	7.0	714
6	GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Annual Review of Immunology, 2006, 24, 353-389.	9.5	713
7	Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science, 2006, 314, 308-312.	6.0	674
8	Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nature Immunology, 2006, 7, 978-986.	7.0	567
9	Adjuvant-Enhanced Antibody Responses in the Absence of Toll-Like Receptor Signaling. Science, 2006, 314, 1936-1938.	6.0	545
10	TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Medicine, 2007, 13, 543-551.	15.2	413
11	Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nature Immunology, 2003, 4, 1223-1229.	7.0	406
12	The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Cell Biology, 2007, 177, 265-275.	2.3	392
13	Cutting Edge: Priming of NK Cells by IL-18. Journal of Immunology, 2008, 181, 1627-1631.	0.4	280
14	A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria. Infection and Immunity, 2005, 73, 4512-4521.	1.0	205
15	Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology, 2007, 362, 304-313.	1.1	168
16	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2007, 204, 853-863.	4.2	143
17	NK cell–mediated killing of target cells triggers robust antigen-specific T cell–mediated and humoral responses. Blood, 2009, 113, 6593-6602.	0.6	123
18	Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. European Journal of Immunology, 2004, 34, 558-564.	1.6	111

#	Article	IF	CITATIONS
19	STAT5 Is Critical To Maintain Effector CD8+ T Cell Responses. Journal of Immunology, 2010, 185, 2116-2124.	0.4	104
20	Commitment to the Regulatory T Cell Lineage Requires CARMA1 in the Thymus but Not in the Periphery. PLoS Biology, 2009, 7, e1000051.	2.6	92
21	Efficient T Cell Activation via a Toll-Interleukin 1 Receptor-Independent Pathway. Immunity, 2006, 24, 787-799.	6.6	91
22	Soluble CD36 Ectodomain Binds Negatively Charged Diacylglycerol Ligands and Acts as a Co-Receptor for TLR2. PLoS ONE, 2009, 4, e7411.	1.1	85
23	Pig MAP/ITIH4 and haptoglobin are interleukin-6-dependent acute-phase plasma proteins in porcine primary cultured hepatocytes. FEBS Journal, 2000, 267, 1878-1885.	0.2	65
24	Sensitizing Anthrax Lethal Toxin-resistant Macrophages to Lethal Toxin-induced Killing by Tumor Necrosis Factor-α. Journal of Biological Chemistry, 2003, 278, 7413-7421.	1.6	64
25	Velvet, a Dominant Egfr Mutation That Causes Wavy Hair and Defective Eyelid Development in Mice. Genetics, 2004, 166, 331-340.	1.2	63
26	ATF3 is a novel regulator of mouse neutrophil migration. Blood, 2014, 123, 2084-2093.	0.6	62
27	LPS, dsRNA and the interferon bridge to adaptive immune responses: Trif, Tram, and other TIR adaptor proteins. Journal of Endotoxin Research, 2004, 10, 130-136.	2.5	61
28	Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight, 2018, 3, .	2.3	61
29	Loss of T Cell and B Cell Quiescence Precedes the Onset of Microbial Flora-Dependent Wasting Disease and Intestinal Inflammation in Gimap5-Deficient Mice. Journal of Immunology, 2010, 184, 3743-3754.	0.4	60
30	Analysis of the MCMV resistome by ENU mutagenesis. Mammalian Genome, 2006, 17, 398-406.	1.0	51
31	C5a Regulates NKT and NK Cell Functions in Sepsis. Journal of Immunology, 2011, 187, 5805-5812.	0.4	49
32	ENU Mutagenesis in Mice. , 2008, 415, 1-16.		49
33	Cell-Associated Double-Stranded RNA Enhances Antitumor Activity through the Production of Type I IFN. Journal of Immunology, 2006, 177, 6122-6128.	0.4	46
34	ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Research Notes, 2012, 5, 577.	0.6	46
35	<i>Lps2</i> : a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. Journal of Endotoxin Research, 2003, 9, 250-255.	2.5	45
36	NKG2D Mediates NK Cell Hyperresponsiveness and Influenza-Induced Pathologies in a Mouse Model of Chronic Obstructive Pulmonary Disease. Journal of Immunology, 2012, 188, 4468-4475.	0.4	45

#	Article	IF	CITATIONS
37	Gab3 is required for IL-2– and IL-15–induced NK cell expansion and limits trophoblast invasion during pregnancy. Science Immunology, 2019, 4, .	5.6	38
38	Lps2: a new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. Journal of Endotoxin Research, 2003, 9, 250-255.	2.5	34
39	Genetic Analysis of Innate Immunity: Identification and Function of the TIR Adapter Proteins. , 2005, 560, 29-39.		34
40	TRAF3: a new component of the TLR-signaling apparatus. Trends in Molecular Medicine, 2006, 12, 187-189.	3.5	34
41	Gimap5-dependent inactivation of GSK3β is required for CD4+ T cell homeostasis and prevention of immune pathology. Nature Communications, 2018, 9, 430.	5.8	32
42	Genetic Analysis of Innate Immunity. Advances in Immunology, 2006, 91, 175-226.	1.1	31
43	CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. , 2020, 8, e000245.		28
44	Genetic analysis of innate immunity: TIR adapter proteins in innate and adaptive immune responses. Microbes and Infection, 2004, 6, 1374-1381.	1.0	26
45	Loss of Immunological Tolerance in Gimap5-Deficient Mice Is Associated with Loss of Foxo in CD4+ T Cells. Journal of Immunology, 2012, 188, 146-154.	0.4	26
46	Forward genetic dissection of afferent immunity: the role of TIR adapter proteins in innate and adaptive immune responses. Comptes Rendus - Biologies, 2004, 327, 571-580.	0.1	25
47	Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathogens, 2020, 16, e1008296.	2.1	24
48	Forward genetic analysis of TLR-signaling pathways: An evaluationâ~†. Advanced Drug Delivery Reviews, 2008, 60, 824-829.	6.6	23
49	Lampe1: An ENU-Germline Mutation Causing Spontaneous Hepatosteatosis Identified through Targeted Exon-Enrichment and Next-Generation Sequencing. PLoS ONE, 2011, 6, e21979.	1.1	23
50	GIMAP5 maintains liver endothelial cell homeostasis and prevents portal hypertension. Journal of Experimental Medicine, 2021, 218, .	4.2	22
51	Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. Laboratory Investigation, 2006, 86, 1126-1135.	1.7	20
52	Myeloid-derived NF-κB negative regulation of PU.1 and c/EBP-β-driven pro-inflammatory cytokine production restrains LPS-induced shock. Innate Immunity, 2017, 23, 175-187.	1.1	20
53	New therapeutic targets in immune disorders: ItpkB, Orai1 and UNC93B. Expert Opinion on Therapeutic Targets, 2008, 12, 391-413.	1.5	19
54	Lps2and Signal Transduction in Sepsis: At the Intersection of Host Responses to Bacteria and Viruses. Scandinavian Journal of Infectious Diseases, 2003, 35, 563-567.	1.5	18

#	Article	IF	CITATIONS
55	Antagonism between MyD88- and TRIF-dependent signals in B7RP-1 up-regulation. European Journal of Immunology, 2005, 35, 1918-1927.	1.6	18
56	From Phenomenon to Phenotype and from Phenotype to Gene: Forward Genetics and the Problem of Sepsis. Journal of Infectious Diseases, 2003, 187, S321-S326.	1.9	17
57	PanR1, a Dominant Negative Missense Allele of the Gene Encoding TNF-α (Tnf), Does Not Impair Lymphoid Development. Journal of Immunology, 2006, 176, 7525-7532.	0.4	17
58	Type I IFN Drives Experimental Systemic Lupus Erythematosus by Distinct Mechanisms in CD4 T Cells and B Cells. ImmunoHorizons, 2020, 4, 140-152.	0.8	14
59	Slpâ€76 is a critical determinant of NKâ€cell mediated recognition of missingâ€self targets. European Journal of Immunology, 2015, 45, 2072-2083.	1.6	13
60	Critical role of transmethylation in TLR signaling and systemic lupus erythematosus. Clinical Immunology, 2013, 147, 133-143.	1.4	12
61	TCR and IL-7 Signaling Are Altered in the Absence of Functional GTPase of the Immune Associated Nucleotide Binding Protein 5 (GIMAP5). PLoS ONE, 2016, 11, e0151837.	1.1	11
62	Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4+ T-cell development and allergic airway disease. Journal of Allergy and Clinical Immunology, 2019, 143, 245-257.e6.	1.5	10
63	GIMAP5 Deficiency Is Associated with Increased AKT Activity in T Lymphocytes. PLoS ONE, 2015, 10, e0139019.	1.1	8
64	Central Role of Gimap5 in Maintaining Peripheral Tolerance and T Cell Homeostasis in the Gut. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	8
65	Identification of a Novel Toll-Like Receptor-Independent Immunoadjuvant Pathway That Depends upon Programmed Cell Death Blood, 2004, 104, 775-775.	0.6	8
66	An ENU mutagenesis approach to dissect "self―induced immune responses. Oncolmmunology, 2012, 1, 856-862.	2.1	7
67	An ENU-induced splice site mutation of mouse Col1a1 causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Scientific Reports, 2017, 7, 11717.	1.6	7
68	Genetic Dissection of Toll-Like Receptor Signaling Using ENU Mutagenesis. Methods in Molecular Biology, 2009, 517, 239-251.	0.4	5
69	Dissecting innate immunity by germline mutagenesis. Immunology, 2008, 123, 459-468.	2.0	4
70	TLRs as bacterial sensors. , 2006, , 1-17.		3
71	The Variable Genomic NK Cell Receptor Locus Is a Key Determinant of CD4+ T Cell Responses During Viral Infection. Frontiers in Immunology, 2020, 11, 197.	2.2	2
72	ENU Mutagenesis in Mice - Genetic Insight into Impaired Immunity and Disease. , 0, , .		2

72 ENU Mutagenesis in Mice - Genetic Insight into Impaired Immunity and Disease. , 0, , .

5

#	Article	IF	CITATIONS
73	Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis. Journal of Experimental Medicine, 2008, 205, 737-737.	4.2	1
74	A mutation within the SH2 domain of slpâ€76 regulates the tissue distribution and cytokine production of iNKT cells in mice. European Journal of Immunology, 2016, 46, 2121-2136.	1.6	1
75	Forward Genetic Analysis of TLR Pathways. , 2005, , 168-180.		Ο
76	Respond to "No antigen-presentation defect in Unc93b13d/3d (3d) mice". Nature Immunology, 2013, 14, 1102-1103.	7.0	0
77	3D, a Novel Mutation That Confers Defective Sensing by Toll-Like Receptors 3, 7 and 9 Blood, 2004, 104, 3441-3441.	0.6	0
78	The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. Journal of Experimental Medicine, 2007, 204, i14-i14.	4.2	0