## Nardo Nardocci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413222/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron.<br>Nature Genetics, 2006, 38, 752-754.                                                                              | 9.4 | 497       |
| 2  | EFNS guidelines on diagnosis and treatment of primary dystonias. European Journal of Neurology, 2011, 18, 5-18.                                                                                                          | 1.7 | 350       |
| 3  | De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nature Genetics, 2012, 44, 1030-1034.                                                                                                             | 9.4 | 345       |
| 4  | Exome Sequencing Reveals De Novo WDR45 Mutations Causing a Phenotypically Distinct, X-Linked<br>Dominant Form of NBIA. American Journal of Human Genetics, 2012, 91, 1144-1149.                                          | 2.6 | 309       |
| 5  | Age-related Iron Deposition in the Basal Ganglia: Quantitative Analysis in Healthy Subjects. Radiology, 2009, 252, 165-172.                                                                                              | 3.6 | 266       |
| 6  | Neurodegeneration associated with genetic defects in phospholipase A <sub>2</sub> . Neurology, 2008, 71, 1402-1409.                                                                                                      | 1.5 | 236       |
| 7  | Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain, 2013, 136, 1708-1717.                                                                         | 3.7 | 203       |
| 8  | Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Annals of Neurology, 2006, 59, 248-256.                                                            | 2.8 | 184       |
| 9  | Exome Sequence Reveals Mutations in CoA Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. American Journal of Human Genetics, 2014, 94, 11-22.                                                      | 2.6 | 176       |
| 10 | Stimulation of the globus pallidus internus for childhood-onset dystonia. Movement Disorders, 2005, 20, 1194-1200.                                                                                                       | 2.2 | 162       |
| 11 | Homozygosity mapping of Hallervorden–Spatz syndrome to chromosome 20p12.3–p13. Nature Genetics,<br>1996, 14, 479-481.                                                                                                    | 9.4 | 158       |
| 12 | Autosomal recessive Rolandic epilepsy with paroxysmal exercise-induced dystonia and writer's cramp:<br>Delineation of the syndrome and gene mapping to chromosome 16p12-11.2. Annals of Neurology, 1999,<br>45, 344-352. | 2.8 | 153       |
| 13 | Iron-related MRI images in patients with pantothenate kinase-associated neurodegeneration (PKAN)<br>treated with deferiprone: Results of a phase II pilot trial. Movement Disorders, 2011, 26, 1755-1759.                | 2.2 | 125       |
| 14 | Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood—a study of<br>155 patients. Orphanet Journal of Rare Diseases, 2015, 10, 123.                                                  | 1.2 | 117       |
| 15 | Hallervorden-Spatz disease: clinical and MRI study of 11 cases diagnosed in life. Journal of Neurology, 1992, 239, 417-425.                                                                                              | 1.8 | 112       |
| 16 | Myoclonus-dystonia syndrome. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2011, 100, 563-575.                                                                                                    | 1.0 | 110       |
| 17 | A Missense Mutation in KCTD17 Causes Autosomal Dominant Myoclonus-Dystonia. American Journal of<br>Human Genetics, 2015, 96, 938-947.                                                                                    | 2.6 | 109       |
| 18 | Infantile neuroaxonal dystrophy. Neurology, 1999, 52, 1472-1472.                                                                                                                                                         | 1.5 | 108       |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations.<br>Molecular Genetics and Metabolism, 2012, 105, 463-471.                                                                    | 0.5 | 106       |
| 20 | Safety and efficacy of deferiprone for pantothenate kinase-associated neurodegeneration: a<br>randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurology, The,<br>2019, 18, 631-642.     | 4.9 | 102       |
| 21 | De Novo Mutations in PDE10A Cause Childhood-Onset Chorea with Bilateral Striatal Lesions. American<br>Journal of Human Genetics, 2016, 98, 763-771.                                                                          | 2.6 | 96        |
| 22 | Status dystonicus: Predictors of outcome and progression patterns of underlying disease. Movement Disorders, 2012, 27, 783-788.                                                                                              | 2.2 | 94        |
| 23 | Neuropsychologic assessment of patients for movement disorder surgery. Movement Disorders, 2000, 15, 771-783.                                                                                                                | 2.2 | 91        |
| 24 | Life-threatening dystonia-dyskinesias in a child: Successful treatment with bilateral pallidal stimulation. Movement Disorders, 2000, 15, 1010-1012.                                                                         | 2.2 | 89        |
| 25 | Mitochondrial dysfunction in Parkinson disease: evidence in mutant PARK2 fibroblasts. Frontiers in<br>Genetics, 2015, 6, 78.                                                                                                 | 1.1 | 77        |
| 26 | Myoclonus–dystonia syndrome: Clinical presentation, disease course, and genetic features in 11<br>families. Movement Disorders, 2008, 23, 28-34.                                                                             | 2.2 | 75        |
| 27 | SUSCEPTIBILITY TO <i>DYT1</i> DYSTONIA IN EUROPEAN PATIENTS IS MODIFIED BY THE D216H POLYMORPHISM. Neurology, 2008, 70, 2261-2262.                                                                                           | 1.5 | 73        |
| 28 | Paroxysmal movement disorders in <i>GLUT1</i> deficiency syndrome. Neurology, 2008, 71, 146-148.                                                                                                                             | 1.5 | 73        |
| 29 | TheÂMovement disorder associated with NMDAR antibody-encephalitis is complex and characteristic: an expert video-rating study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 724-726.                         | 0.9 | 71        |
| 30 | Infantile neuroaxonal dystrophy: neuroradiological studies in 11 patients. Neuroradiology, 1999, 41,<br>376-380.                                                                                                             | 1.1 | 70        |
| 31 | Lossâ€ofâ€Function Variants in <scp>HOPS</scp> Complex Genes <scp><i>VPS16</i></scp> and <scp><i>VPS41</i></scp> Cause Early Onset Dystonia Associated with Lysosomal Abnormalities. Annals of Neurology, 2020, 88, 867-877. | 2.8 | 70        |
| 32 | ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients. Parkinsonism and Related Disorders, 2017, 41, 37-43.                                              | 1.1 | 67        |
| 33 | Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Molecular Genetics and Metabolism, 2017, 120, 278-287.                                                                  | 0.5 | 64        |
| 34 | Neurological Disorders, other than Stroke, Associated with Antiphospholipid Antibodies in Childhood. Neuropediatrics, 1996, 27, 149-153.                                                                                     | 0.3 | 63        |
| 35 | Analysis of the ?-sarcoglycan gene in familial and sporadic myoclonus-dystonia: Evidence for genetic heterogeneity. Movement Disorders, 2003, 18, 1047-1051.                                                                 | 2.2 | 58        |
| 36 | Pallidal stimulation for acquired dystonia due to cerebral palsy: beyond 5Âyears. European Journal of<br>Neurology, 2015, 22, 426.                                                                                           | 1.7 | 58        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The relationship between group A streptococcal infections and Tourette syndrome: a study on a large service-based cohort. Developmental Medicine and Child Neurology, 2011, 53, 951-957.        | 1.1 | 57        |
| 38 | Frequency and phenotypic spectrum of <i>KMT2B</i> dystonia in childhood: A single enter cohort<br>study. Movement Disorders, 2019, 34, 1516-1527.                                               | 2.2 | 55        |
| 39 | ATP1A3-related disorders: An update. European Journal of Paediatric Neurology, 2018, 22, 257-263.                                                                                               | 0.7 | 54        |
| 40 | Neonatal dopa-responsive extrapyramidal syndrome in twins with recessive GTPCH deficiency.<br>Neurology, 2003, 60, 335-337.                                                                     | 1.5 | 50        |
| 41 | Neuronal ceroid-lipofuscinosis: A clinical and morphological study of 19 patients. American Journal of Medical Genetics Part A, 1995, 57, 137-141.                                              | 2.4 | 46        |
| 42 | Ataxia with oculomotor apraxia type1 (AOA1): novel and recurrent aprataxin mutations, coenzyme Q10 analyses, and clinical findings in Italian patients. Neurogenetics, 2011, 12, 193-201.       | 0.7 | 46        |
| 43 | Variant late infantile ceroid lipofuscinoses associated with novel mutations in CLN6. Biochemical and Biophysical Research Communications, 2009, 379, 892-897.                                  | 1.0 | 45        |
| 44 | Vasculogenic and Angiogenic Pathways in Moyamoya Disease. Current Medicinal Chemistry, 2016, 23,<br>315-345.                                                                                    | 1.2 | 44        |
| 45 | A neurophysiological study of myoclonus in patients with DYT11 myoclonusâ€dystonia syndrome.<br>Movement Disorders, 2008, 23, 2041-2048.                                                        | 2.2 | 43        |
| 46 | Mutation screening of the DYT6/ <i>THAP1</i> gene in Italy. Movement Disorders, 2009, 24, 2424-2427.                                                                                            | 2.2 | 43        |
| 47 | Concomitant deficiency of β- and γ-sarcoglycans in 20 α-sarcoglycan (adhalin)-deficient patients:<br>immunohistochemical analysis and clinical aspects. Acta Neuropathologica, 1997, 94, 28-35. | 3.9 | 42        |
| 48 | Molecular epidemiology of childhood neuronal ceroid-lipofuscinosis in Italy. Orphanet Journal of<br>Rare Diseases, 2013, 8, 19.                                                                 | 1.2 | 42        |
| 49 | Transient Paroxysmal Dystonia in Infancy. Neuropediatrics, 1988, 19, 171-174.                                                                                                                   | 0.3 | 41        |
| 50 | Revelation of a Novel <i>CLN5</i> Mutation in Early Juvenile Neuronal Ceroid Lipofuscinosis.<br>Neuropediatrics, 2007, 38, 46-49.                                                               | 0.3 | 41        |
| 51 | Electroclinical spectrum of the neuronal ceroid lipofuscinoses associated with <i>CLN6</i> mutations. Neurology, 2015, 85, 316-324.                                                             | 1.5 | 40        |
| 52 | Deep brain stimulation for movement disorders. Considerations on 276 consecutive patients. Journal of Neural Transmission, 2011, 118, 1497-1510.                                                | 1.4 | 39        |
| 53 | Phenomenology of psychogenic movement disorders in children. Movement Disorders, 2012, 27,<br>1153-1157.                                                                                        | 2.2 | 39        |
| 54 | C19orf12 and FA2H Mutations Are Rare in Italian Patients With Neurodegeneration With Brain Iron<br>Accumulation. Seminars in Pediatric Neurology, 2012, 19, 75-81.                              | 1.0 | 38        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Cognitive and neuropsychological evolution in children with anti-NMDAR encephalitis. Journal of Neurology, 2016, 263, 765-771.                                                                  | 1.8 | 38        |
| 56 | Hemidystonia symptomatic of primary antiphospholipid syndrome in childhood. Movement Disorders,<br>1993, 8, 383-386.                                                                            | 2.2 | 37        |
| 57 | Complex tics, stereotypies, and compulsive behavior as clinical presentation of a juvenile progressive dystonia suggestive of hallervorden-spatz disease. Movement Disorders, 1994, 9, 369-371. | 2.2 | 37        |
| 58 | Non-DYT1 early-onset primary torsion dystonia: Comparison with DYT1 phenotype and review of the literature. Movement Disorders, 2006, 21, 1411-1418.                                            | 2.2 | 37        |
| 59 | CT and MRI in maple syrup urine disease. Neurology, 1988, 38, 486-486.                                                                                                                          | 1.5 | 37        |
| 60 | Myoclonic dystonia as unique presentation of isolated vitamin E deficiency in a young patient.<br>Movement Disorders, 2002, 17, 612-614.                                                        | 2.2 | 36        |
| 61 | Frequency of DYT1 mutation in early onset primary dystonia in Italian patients. Movement Disorders, 2002, 17, 407-408.                                                                          | 2.2 | 36        |
| 62 | Typical and Atypical Forms of Paroxysmal Choreoathetosis. Developmental Medicine and Child<br>Neurology, 1989, 31, 670-674.                                                                     | 1.1 | 35        |
| 63 | Hemophagocytic lymphohistiocytosis with neurological presentation: MRI findings and a nearly miss diagnosis. Neurological Sciences, 2011, 32, 473-477.                                          | 0.9 | 35        |
| 64 | The "Eye-of-the-Tiger―Sign may be Absent in the Early Stages of Classic Pantothenate Kinase Associated<br>Neurodegeneration. Neuropediatrics, 2011, 42, 159-162.                                | 0.3 | 34        |
| 65 | Pediatric NMDAR encephalitis: A single center observation study with a closer look at movement disorders. European Journal of Paediatric Neurology, 2018, 22, 301-307.                          | 0.7 | 34        |
| 66 | Respiratory failure in infants due to spinal muscular atrophy with respiratory distress type 1.<br>Intensive Care Medicine, 2006, 32, 1851-1855.                                                | 3.9 | 33        |
| 67 | Glucose transporter type 1 deficiency: Ketogenic diet in three patients with atypical phenotype. Brain and Development, 2010, 32, 404-408.                                                      | 0.6 | 33        |
| 68 | Progressive dystonia symptomatic of juvenile GM2 gangliosidosis. Movement Disorders, 1992, 7, 64-67.                                                                                            | 2.2 | 32        |
| 69 | Sporadic and familial glut1ds Italian patients: A wide clinical variability. Seizure: the Journal of the<br>British Epilepsy Association, 2015, 24, 28-32.                                      | 0.9 | 32        |
| 70 | Phenotype and natural history of variant late infantile ceroidâ€ŀipofuscinosis 5. Developmental<br>Medicine and Child Neurology, 2017, 59, 815-821.                                             | 1.1 | 31        |
| 71 | Extragenetic factors and clinical penetrance of DYT1 dystonia: an exploratory study. Journal of Neurology, 2013, 260, 1081-1086.                                                                | 1.8 | 30        |
| 72 | Faulty cardiac repolarization reserve in alternating hemiplegia of childhood broadens the phenotype.<br>Brain, 2015, 138, 2859-2874.                                                            | 3.7 | 30        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Long Term Results of Stereotactic Thalamotomy for Cerebral Palsy. Neurosurgery, 1983, 12, 195-202.                                                                                                                                                 | 0.6 | 29        |
| 74 | Role of UBE3A and ATP10A genes in autism susceptibility region 15q11-q13 in an Italian population: A positive replication for UBE3A. Psychiatry Research, 2011, 185, 33-38.                                                                        | 1.7 | 29        |
| 75 | EMC-Based Visual-Haptic Biofeedback: A Tool to Improve Motor Control in Children With Primary<br>Dystonia. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 474-480.                                                  | 2.7 | 29        |
| 76 | Molecular Genetics and Interferon Signature in the Italian Aicardi Goutières Syndrome Cohort:<br>Report of 12 New Cases and Literature Review. Journal of Clinical Medicine, 2019, 8, 750.                                                         | 1.0 | 29        |
| 77 | Acquired hemidystonia in childhood: A clinical and neuroradiological study of thirteen patients.<br>Pediatric Neurology, 1996, 15, 108-113.                                                                                                        | 1.0 | 28        |
| 78 | Targeting the brain: considerations in 332 consecutive patients treated by deep brain stimulation (DBS) for severe neurological diseases. Neurological Sciences, 2012, 33, 1285-1303.                                                              | 0.9 | 28        |
| 79 | The <i>CACNA1B</i> R1389H variant is not associated with myoclonus-dystonia in a large European multicentric cohort. Human Molecular Genetics, 2015, 24, 5326-5329.                                                                                | 1.4 | 28        |
| 80 | Recognizing the Common Origins of Dystonia and the Development of Human Movement: A Manifesto of Unmet Needs in Isolated Childhood Dystonias. Frontiers in Neurology, 2016, 7, 226.                                                                | 1.1 | 28        |
| 81 | Paroxysmal dyskinesias in childhood. Pediatric Neurology, 2003, 28, 168-172.                                                                                                                                                                       | 1.0 | 27        |
| 82 | GTP-cyclohydrolase I gene mutations in patients with autosomal dominant and recessive GTP-CH1<br>deficiency: Identification and functional characterization of four novel mutations. Journal of<br>Inherited Metabolic Disease, 2004, 27, 455-463. | 1.7 | 27        |
| 83 | Focal lesion of the right cingulum: a case report in a child Journal of Neurology, Neurosurgery and<br>Psychiatry, 1981, 44, 355-357.                                                                                                              | 0.9 | 26        |
| 84 | Pallidal Deep Brain Stimulation in DYT6 Dystonia: Clinical Outcome and Predictive Factors for Motor<br>Improvement. Journal of Clinical Medicine, 2019, 8, 2163.                                                                                   | 1.0 | 25        |
| 85 | Reaching and Writing Movements: Sensitive and Reliable Tools to Measure Genetic Dystonia in<br>Children. Journal of Child Neurology, 2011, 26, 822-829.                                                                                            | 0.7 | 23        |
| 86 | Neurological Disorders Associated with Striatal Lesions: Classification and Diagnostic Approach.<br>Current Neurology and Neuroscience Reports, 2016, 16, 54.                                                                                      | 2.0 | 23        |
| 87 | Cortical myoclonus in childhood and juvenile onset Huntington's disease. Parkinsonism and Related<br>Disorders, 2012, 18, 794-797.                                                                                                                 | 1.1 | 22        |
| 88 | Deep Brain Stimulation Electrode Used for Radiofrequency Lesion of the Globus Pallidus Internus in Dystonia. Stereotactic and Functional Neurosurgery, 2009, 87, 348-352.                                                                          | 0.8 | 21        |
| 89 | Impaired body movement representation in DYT1 mutation carriers. Clinical Neurophysiology, 2008, 119, 1864-1869.                                                                                                                                   | 0.7 | 20        |
| 90 | Progressive myoclonus epilepsies: an electroclinical, biochemical, morphological and molecular genetic study of 17 cases. Acta Neurologica Scandinavica, 1993, 87, 219-223.                                                                        | 1.0 | 20        |

| #   | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Substantia Nigra Swelling and Dentate Nucleus T2 Hyperintensity May Be Early Magnetic Resonance<br>Imaging Signs of βâ€Propeller Proteinâ€Associated Neurodegeneration. Movement Disorders Clinical<br>Practice, 2019, 6, 51-56. | 0.8 | 20        |
| 92  | Postural Control in Children with Cerebellar Ataxia. Applied Sciences (Switzerland), 2020, 10, 1606.                                                                                                                             | 1.3 | 20        |
| 93  | Consciousness Disturbances in Megalencephalic Leukoencephalopathy with Subcortical Cysts.<br>Neuropediatrics, 2003, 34, 211-214.                                                                                                 | 0.3 | 19        |
| 94  | A causality algorithm to guide diagnosis and treatment of catatonia due to autoimmune conditions in children and adolescents. Schizophrenia Research, 2018, 200, 68-76.                                                          | 1.1 | 19        |
| 95  | Cardiac phenotype in <i>ATP1A3</i> -related syndromes. Neurology, 2020, 95, e2866-e2879.                                                                                                                                         | 1.5 | 19        |
| 96  | Linguistic Development in a Patient with Landau-Kleffner Syndrome: A Nine-Year Follow-Up.<br>Neuropediatrics, 1995, 26, 19-25.                                                                                                   | 0.3 | 18        |
| 97  | Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia. Journal of NeuroEngineering and Rehabilitation, 2012, 9, 46.                                                              | 2.4 | 18        |
| 98  | Childhood-onset ATP1A3-related conditions: Report of two new cases of phenotypic spectrum.<br>Parkinsonism and Related Disorders, 2016, 30, 81-82.                                                                               | 1.1 | 18        |
| 99  | Clinical rating scale for pantothenate kinaseâ€associated neurodegeneration: A pilot study. Movement<br>Disorders, 2017, 32, 1620-1630.                                                                                          | 2.2 | 18        |
| 100 | Screening of SLC2A1 in a large cohort of patients suspected for Glut1 deficiency syndrome:<br>identification of novel variants and associated phenotypes. Journal of Neurology, 2019, 266, 1439-1448.                            | 1.8 | 18        |
| 101 | Paroxysmal nonâ€epileptic motor events in childhood: a clinical and videoâ€EEG–polymyographic study.<br>Developmental Medicine and Child Neurology, 2012, 54, 334-338.                                                           | 1.1 | 17        |
| 102 | Encephalopathies with intracranial calcification in children: clinical and genetic characterization.<br>Orphanet Journal of Rare Diseases, 2018, 13, 135.                                                                        | 1.2 | 17        |
| 103 | Idiopathic dystonia: Neuropharmacological study. Journal of Neurology, 1982, 227, 239-247.                                                                                                                                       | 1.8 | 16        |
| 104 | Alternating Hemiplegia and Epilepsia Partialis Continua: A new phenotype for a novel compound<br>TBC1D24 mutation. Seizure: the Journal of the British Epilepsy Association, 2017, 47, 71-73.                                    | 0.9 | 16        |
| 105 | CANS: Childhood acute neuropsychiatric syndromes. European Journal of Paediatric Neurology, 2018, 22, 316-320.                                                                                                                   | 0.7 | 16        |
| 106 | <scp><i>YY1</i></scp> â€Related Dystonia: Clinical Aspects and Longâ€Term Response to Deep Brain<br>Stimulation. Movement Disorders, 2021, 36, 1461-1462.                                                                        | 2.2 | 16        |
| 107 | Epileptic phenotypes in children with earlyâ€onset mitochondrial diseases. Acta Neurologica<br>Scandinavica, 2019, 140, 184-193.                                                                                                 | 1.0 | 15        |
| 108 | GEN-O-MA project: an Italian network studying clinical course and pathogenic pathways of moyamoya disease—study protocol and preliminary results. Neurological Sciences, 2019, 40, 561-570.                                      | 0.9 | 15        |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Vascular Remodeling in Moyamoya Angiopathy: From Peripheral Blood Mononuclear Cells to<br>Endothelial Cells. International Journal of Molecular Sciences, 2020, 21, 5763.         | 1.8 | 15        |
| 110 | Chronic GM1 Gangliosidosis Presenting as Dystonia: Clinical and Biochemical Studies in a New Case.<br>Neuropediatrics, 1993, 24, 164-166.                                         | 0.3 | 14        |
| 111 | Infantile neuroaxonal dystrophy and pantothenate kinase-associated neurodegeneration. Neurology, 2004, 63, 922-924.                                                               | 1.5 | 14        |
| 112 | Clinical and genetic features of paroxysmal kinesigenic dyskinesia in Italian patients. European Journal<br>of Paediatric Neurology, 2016, 20, 152-157.                           | 0.7 | 14        |
| 113 | Deep brain stimulation versus pallidotomy for status dystonicus: a single-center case series. Journal of Neurosurgery, 2021, 134, 197-207.                                        | 0.9 | 14        |
| 114 | Idiopathic dystonia with onset in childhood. Journal of Neurology, 1989, 236, 319-321.                                                                                            | 1.8 | 13        |
| 115 | Pathophysiology and Treatment of Neurodegeneration With Brain Iron Accumulation in the Pediatric<br>Population. Current Treatment Options in Neurology, 2013, 15, 652-667.        | 0.7 | 13        |
| 116 | Focal seizure, focal dyskinesia, or both? A complex motor phenomenon reveals anti-NMDAR encephalitis. Seizure: the Journal of the British Epilepsy Association, 2015, 27, 16-18.  | 0.9 | 13        |
| 117 | A family with paroxysmal nonkinesigenic dyskinesias (PNKD): Evidence of mitochondrial dysfunction.<br>European Journal of Paediatric Neurology, 2015, 19, 64-68.                  | 0.7 | 13        |
| 118 | DYT2 screening in early-onset isolated dystonia. European Journal of Paediatric Neurology, 2017, 21, 269-271.                                                                     | 0.7 | 13        |
| 119 | A <i>PDE10A</i> de novo mutation causes childhoodâ€onset chorea with diurnal fluctuations.<br>Movement Disorders, 2017, 32, 1646-1647.                                            | 2.2 | 13        |
| 120 | Thiamine-responsive disease due to mutation of <i>tpk1</i> : Importance of avoiding misdiagnosis.<br>Neurology, 2017, 89, 870-871.                                                | 1.5 | 13        |
| 121 | Refining the mutational spectrum and gene–phenotype correlates in pontocerebellar hypoplasia:<br>results of a multicentric study. Journal of Medical Genetics, 2022, 59, 399-409. | 1.5 | 13        |
| 122 | Paroxysmal dystonia and paroxysmal tremor in a young patient with multiple sclerosis. Italian Journal of Neurological Sciences, 1995, 16, 315-319.                                | 0.1 | 11        |
| 123 | Tourettism as clinical presentation of Huntington's disease with onset in childhood. Italian Journal of Neurological Sciences, 1998, 19, 383-385.                                 | 0.1 | 11        |
| 124 | Polymyography in the diagnosis of childhood onset movement disorders. European Journal of<br>Paediatric Neurology, 2008, 12, 480-483.                                             | 0.7 | 11        |
| 125 | Early onset primary dystonia. European Journal of Paediatric Neurology, 2009, 13, 488-492.                                                                                        | 0.7 | 11        |
| 126 | R106C TFG variant causes infantile neuroaxonal dystrophy "plus―syndrome. Neurogenetics, 2018, 19,<br>179-187.                                                                     | 0.7 | 11        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Psychiatric autoimmune conditions in children and adolescents: Is catatonia a severity marker?.<br>Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110028.            | 2.5 | 11        |
| 128 | Movement disorders in patients with <scp>R</scp> ett syndrome: A systematic review of evidence and associated clinical considerations. Psychiatry and Clinical Neurosciences, 2021, 75, 369-393. | 1.0 | 11        |
| 129 | White matter and cerebellar involvement in alternating hemiplegia of childhood. Journal of Neurology, 2020, 267, 1300-1311.                                                                      | 1.8 | 10        |
| 130 | Childhood-onset HAM/TSP with progressive cognitive impairment. Neurological Sciences, 2010, 31, 209-212.                                                                                         | 0.9 | 9         |
| 131 | Sequence Variations in Mitochondrial Ferritin: Distribution in Healthy Controls and Different Types of Patients. Genetic Testing and Molecular Biomarkers, 2010, 14, 793-796.                    | 0.3 | 9         |
| 132 | Update on pediatric dystonias: etiology, epidemiology, and management. Degenerative Neurological<br>and Neuromuscular Disease, 2012, 2, 29.                                                      | 0.7 | 9         |
| 133 | Therapeutic Advances in Neurodegeneration With Brain Iron Accumulation. Seminars in Pediatric<br>Neurology, 2012, 19, 82-86.                                                                     | 1.0 | 9         |
| 134 | Therapeutic Advances in Neurodegeneration with Brain Iron Accumulation. International Review of Neurobiology, 2013, 110, 153-164.                                                                | 0.9 | 9         |
| 135 | Benign hereditary chorea and deletions outside NKX2-1: What's the role of MBIP?. European Journal of<br>Medical Genetics, 2018, 61, 581-584.                                                     | 0.7 | 9         |
| 136 | Diagnosis and treatment of pediatric onset isolated dystonia. European Journal of Paediatric<br>Neurology, 2018, 22, 238-244.                                                                    | 0.7 | 9         |
| 137 | Depression after stereotactic thalamotomy in patients with abnormal movements. Italian Journal of<br>Neurological Sciences, 1982, 3, 301-310.                                                    | 0.1 | 8         |
| 138 | Persistent Fixed Torticollis due to Atlanto-Axial Rotatory Fixation: Report of 4 Pediatric Cases.<br>Neuropediatrics, 2005, 36, 45-49.                                                           | 0.3 | 8         |
| 139 | Subacute Cervical Myelopathy in a Child with Cerebral Palsy. Pediatric Neurosurgery, 1982, 9, 354-357.                                                                                           | 0.4 | 7         |
| 140 | Neuronal ceroid lipofuscinoses: detection of atypical forms. Neurological Sciences, 2000, 21, S57-S61.                                                                                           | 0.9 | 7         |
| 141 | Axonal dystrophies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113,<br>1919-1924.                                                                                | 1.0 | 7         |
| 142 | Long term perceptions of illness and self after Deep Brain Stimulation in pediatric dystonia: A<br>narrative research. European Journal of Paediatric Neurology, 2020, 26, 61-67.                | 0.7 | 7         |
| 143 | Neglect after right unilateral thalamotomy. A case report. Italian Journal of Neurological Sciences,<br>1982, 3, 61-64.                                                                          | 0.1 | 6         |
| 144 | Measuring participation in children with Gilles de la Tourette syndrome: A pilot study with ICF-CY.<br>Disability and Rehabilitation, 2009, 31, S116-S120.                                       | 0.9 | 6         |

| #   | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Posteroventrolateral pallidotomy through implanted DBS electrodes monitored by recording local field potentials. British Journal of Neurosurgery, 2015, 29, 888-890.                                                           | 0.4 | 6         |
| 146 | Downbeat nystagmus as the presenting symptom of infantile neuroaxonal dystrophy: A case report.<br>Brain and Development, 2015, 37, 270-272.                                                                                   | 0.6 | 6         |
| 147 | SLC19A3 related disorder: Treatment implication and clinical outcome of 2 new patients. European<br>Journal of Paediatric Neurology, 2018, 22, 332-335.                                                                        | 0.7 | 6         |
| 148 | Transient paroxysmal dystonia in an infant possibly induced by cisapride. Italian Journal of<br>Neurological Sciences, 1996, 17, 157-159.                                                                                      | 0.1 | 4         |
| 149 | A pathophysiological study of neuronal ceroid lipofuscinoses in 17 patients: critical review and methodological proposal. Neurological Sciences, 2000, 21, S89-S92.                                                            | 0.9 | 4         |
| 150 | Longâ€ŧerm educational program to limit the burden of neurological disorders in Subâ€Saharan Africa:<br>report from an Italyâ"Mozambique cooperation on epilepsy in children. European Journal of<br>Neurology, 2018, 25, e39. | 1.7 | 4         |
| 151 | The noncoding RNA AK127244 in 2p16.3 locus: A new susceptibility region for neuropsychiatric<br>disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 557-562.                         | 1.1 | 4         |
| 152 | Status dystonicus induced by deep brain stimulation surgery. Neurological Sciences, 2020, 41, 729-730.                                                                                                                         | 0.9 | 4         |
| 153 | Automatic imitation in youngsters with Gilles de la Tourette syndrome: A behavioral study. Child<br>Neuropsychology, 2021, 27, 782-798.                                                                                        | 0.8 | 4         |
| 154 | Pediatric Paroxysmal Exercise-Induced Neurological Symptoms: Clinical Spectrum and Diagnostic Algorithm. Frontiers in Neurology, 2021, 12, 658178.                                                                             | 1.1 | 4         |
| 155 | Neuronal ceroid lipofuscinoses: a review. Italian Journal of Neurological Sciences, 1998, 19, 271-276.                                                                                                                         | 0.1 | 3         |
| 156 | Inherited Isolated Dystonia in Children. Journal of Pediatric Neurology, 2015, 13, 174-179.                                                                                                                                    | 0.0 | 3         |
| 157 | Cerebrospinal Fluid Monoamine Metabolite Analysis in Pediatric Movement Disorders. Journal of<br>Child Neurology, 2015, 30, 1800-1805.                                                                                         | 0.7 | 3         |
| 158 | Globus pallidus internus activity during simultaneous bilateral microelectrode recordings in status dystonicus. Acta Neurochirurgica, 2021, 163, 211-217.                                                                      | 0.9 | 3         |
| 159 | <scp>THAP1</scp> Dystonia with Globus Pallidus <scp>T2</scp> Hypointensity: A Report of Two Cases.<br>Movement Disorders, 2021, 36, 1463-1464.                                                                                 | 2.2 | 3         |
| 160 | Early-onset bradykinetic rigid syndrome and reflex seizures in a child with PURA syndrome. Epileptic<br>Disorders, 2021, 23, 745-748.                                                                                          | 0.7 | 3         |
| 161 | Elevated aspartate aminotransferase and lactate dehydrogenase levels are a constant finding in<br><i><scp>PLA</scp>2G6</i> â€associated neurodegeneration. European Journal of Neurology, 2016, 23,<br>e24-5.                  | 1.7 | 2         |
| 162 | A perplexing case of juvenile extrapyramidal disease. Italian Journal of Neurological Sciences, 1981, 2,<br>135-137.                                                                                                           | 0.1 | 1         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Diagnostic issues in childhood and adult dystonia. Expert Opinion on Medical Diagnostics, 2011, 5, 483-500.                                                                                        | 1.6 | 1         |
| 164 | Running apraxia as a presenting symptom of neuronal ceroid lipofuscinosis 6. Movement Disorders, 2014, 29, 277-278.                                                                                | 2.2 | 1         |
| 165 | Deep Brain Stimulation in Dystonia. , 2008, , 305-319.                                                                                                                                             |     | 1         |
| 166 | Stereotactic Surgery of Abnormal Movements: Clinical Results in 33 Cerebral Palsy Patients.<br>Stereotactic and Functional Neurosurgery, 1982, 45, 306-310.                                        | 0.8 | 0         |
| 167 | P2.062 MLPA analysis in EOP patients. Parkinsonism and Related Disorders, 2009, 15, S105.                                                                                                          | 1.1 | 0         |
| 168 | Response to letter by Dr Neil Murray. European Journal of Neurology, 2011, 18, e62-e62.                                                                                                            | 1.7 | 0         |
| 169 | Indicazioni e trattamento chirurgico della distonia dell'età pediatrica. Area Pediatrica, 2012, 13, 93-100.                                                                                        | 0.0 | 0         |
| 170 | Global metabolic profiling reveals metabolic consequences of mitochondrial coenzyme A deficiency in patients with PANK2 mutations. Mitochondrion, 2012, 12, 577.                                   | 1.6 | 0         |
| 171 | SCN8A splicing mutation causing skipping of the exon 15 associated with intellectual disability and cortical myoclonus. Seizure: the Journal of the British Epilepsy Association, 2020, 82, 56-58. | 0.9 | 0         |
| 172 | In-depth phenotyping of movement disorders in WARS2 encephalopathy. Journal of the Neurological Sciences, 2021, 429, 117675.                                                                       | 0.3 | 0         |
| 173 | Distonie. , 2009, , 393-398.                                                                                                                                                                       |     | 0         |