
Quan Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4132073/publications.pdf Version: 2024-02-01

ΟΠΑΝ ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Voltage-Gated Ion Channels in Human Pancreatic Î ² -Cells: Electrophysiological Characterization and Role in Insulin Secretion. Diabetes, 2008, 57, 1618-1628.	0.6	362
2	MicroRNA-7a regulates pancreatic \hat{I}^2 cell function. Journal of Clinical Investigation, 2014, 124, 2722-2735.	8.2	251
3	GLP-1 Inhibits and Adrenaline Stimulates Glucagon Release by Differential Modulation of N- and L-Type Ca2+ Channel-Dependent Exocytosis. Cell Metabolism, 2010, 11, 543-553.	16.2	225
4	Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 2014, 5, 4639.	12.8	220
5	Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 2012, 51, 300-308.	2.4	195
6	Role of KATP Channels in Glucose-Regulated Glucagon Secretion and Impaired Counterregulation in Type 2 Diabetes. Cell Metabolism, 2013, 18, 871-882.	16.2	179
7	Alpha-, Delta- and PP-cells. Journal of Histochemistry and Cytochemistry, 2015, 63, 575-591.	2.5	147
8	Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. Journal of Physiology, 2004, 556, 711-726.	2.9	137
9	Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca2+ Channels from Secretory Granules. Cell Metabolism, 2009, 10, 455-465.	16.2	131
10	Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion. Nature Communications, 2019, 10, 139.	12.8	117
11	Membrane Potential-Dependent Inactivation of Voltage-Gated Ion Channels in α-Cells Inhibits Glucagon Secretion From Human Islets. Diabetes, 2010, 59, 2198-2208.	0.6	110
12	Glucagon secretion from pancreatic α-cells. Upsala Journal of Medical Sciences, 2016, 121, 113-119.	0.9	108
13	R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nature Cell Biology, 2007, 9, 453-460.	10.3	95
14	Synaptotagminâ€7 is a principal Ca ²⁺ sensor for Ca ²⁺ â€induced glucagon exocytosis in pancreas. Journal of Physiology, 2009, 587, 1169-1178.	2.9	87
15	Electrophysiology of pancreatic \hat{l}^2 -cells in intact mouse islets of Langerhans. Progress in Biophysics and Molecular Biology, 2011, 107, 224-235.	2.9	87
16	Na ⁺ current properties in islet α―and βâ€cells reflect cellâ€specific <i>Scn3a</i> and <i>Scn9a</i> expression. Journal of Physiology, 2014, 592, 4677-4696.	2.9	78
17	ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia, 2014, 57, 1749-1761.	6.3	74
18	α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 2018, 9, 546.	12.8	72

QUAN ZHANG

#	Article	IF	CITATIONS
19	GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca ²⁺ channels. Physiological Reports, 2018, 6, e13852.	1.7	71
20	Cell coupling in mouse pancreatic β-cells measured in intact islets of Langerhans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3503-3523.	3.4	69
21	Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles. Diabetes, 2010, 59, 1192-1201.	0.6	63
22	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes, 2018, 67, 1128-1139.	0.6	61
23	Fumarate Hydratase Deletion in Pancreatic Î ² Cells Leads to Progressive Diabetes. Cell Reports, 2017, 20, 3135-3148.	6.4	57
24	Dysregulation of Glucagon Secretion by Hyperglycemia-Induced Sodium-Dependent Reduction of ATP Production. Cell Metabolism, 2019, 29, 430-442.e4.	16.2	57
25	"Take Me To Your Leaderâ€: An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets. Diabetes, 2020, 69, 830-836.	0.6	50
26	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. Journal of Biological Chemistry, 2015, 290, 21376-21392.	3.4	48
27	Gs/Gq signaling switch in \hat{I}^2 cells defines incretin effectiveness in diabetes. Journal of Clinical Investigation, 2020, 130, 6639-6655.	8.2	46
28	Functional identification of islet cell types by electrophysiological fingerprinting. Journal of the Royal Society Interface, 2017, 14, 20160999.	3.4	45
29	Mutant Mice With Calcium-Sensing Receptor Activation Have Hyperglycemia That Is Rectified by Calcilytic Therapy. Endocrinology, 2017, 158, 2486-2502.	2.8	31
30	miR-657 Promotes Macrophage Polarization toward M1 by Targeting FAM46C in Gestational Diabetes Mellitus. Mediators of Inflammation, 2019, 2019, 1-9.	3.0	27
31	Somatostatin secretion by Na+-dependent Ca2+-induced Ca2+ release in pancreatic delta cells. Nature Metabolism, 2020, 2, 32-40.	11.9	26
32	Glucose stimulates somatostatin secretion in pancreatic δ-cells by cAMP-dependent intracellular Ca2+ release. Journal of General Physiology, 2019, 151, 1094-1115.	1.9	19
33	δ-Cells: The Neighborhood Watch in the Islet Community. Biology, 2021, 10, 74.	2.8	19
34	â€~Resistance is futile?' – paradoxical inhibitory effects of K ATP channel closure in glucagonâ€secreting αâ€cells. Journal of Physiology, 2020, 598, 4765-4780.	2.9	16
35	Potentially Critical Roles of <i>NDUFB5</i> , <i>TIMMDC1</i> , <i>and VDAC3</i> i>in the Progression of Septic Cardiomyopathy Through Integrated Bioinformatics Analysis. DNA and Cell Biology, 2020, 39, 105-117.	1.9	12
36	<p>Exosomal miR-548c-5p Regulates Colorectal Cancer Cell Growth and Invasion Through HIF1A/CDC42 Axis</p> . OncoTargets and Therapy, 2020, Volume 13, 9875-9885.	2.0	11

QUAN ZHANG

#	Article	IF	CITATIONS
37	Temporal metabolic and transcriptomic characteristics crossing islets and liver reveal dynamic pathophysiology in diet-induced diabetes. IScience, 2021, 24, 102265.	4.1	11
38	Acetyl-CoA-carboxylase 1 (ACC1) plays a critical role in glucagon secretion. Communications Biology, 2022, 5, 238.	4.4	8
39	Biphasic voltageâ€dependent inactivation of human Na _V 1.3, 1.6 and 1.7 Na ⁺ channels expressed in rodent insulinâ€secreting cells. Journal of Physiology, 2018, 596, 1601-1626.	2.9	6
40	Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18, 2077-2096.	1.9	5
41	Regulation of αâ€cell glucagon secretion: The role of second messengers. Chronic Diseases and Translational Medicine, 2022, 8, 7-18.	1.2	5
42	Modulation of large dense core vesicle insulin content mediates rhythmic hormone release from pancreatic beta cells over the 24h cycle. PLoS ONE, 2018, 13, e0193882.	2.5	3
43	Matthias Braun, 23 July 1966–16 November 2013. Diabetologia, 2014, 57, 2431-2432.	6.3	Ο