
Mustapha Abdelmoula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/413200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron-iron oxide supported palladium catalyst for the interconversion of formate and carbon dioxide. Chemical Engineering Journal, 2022, 427, 131763.	12.7	6
2	Pb-Bearing Ferrihydrite Bioreduction and Secondary-Mineral Precipitation during Fe Redox Cycling. Minerals (Basel, Switzerland), 2022, 12, 610.	2.0	1
3	Insight into the magnetic properties of Pb-dopped iron oxide nanoparticles during Fe(III) bio-reduction by Shewanella oneidensis MR-1. Chemical Geology, 2022, , 120904.	3.3	2
4	Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement. Science of the Total Environment, 2021, 784, 147105.	8.0	43
5	Effect of Sb on precipitation of biogenic minerals during the reduction of Sb-bearing ferrihydrites. Geochimica Et Cosmochimica Acta, 2021, 309, 96-111.	3.9	11
6	Biogenic Fe(II-III) Hydroxycarbonate Green Rust Enhances Nitrate Removal and Decreases Ammonium Selectivity during Heterotrophic Denitrification. Minerals (Basel, Switzerland), 2020, 10, 818.	2.0	5
7	As(V) and As(III) sequestration by starch functionalized magnetite nanoparticles: influence of the synthesis route onto the trapping efficiency. Science and Technology of Advanced Materials, 2020, 21, 524-539.	6.1	13
8	Stability of magnetic LDH composites used for phosphate recovery. Journal of Colloid and Interface Science, 2020, 580, 660-668.	9.4	28
9	Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic properties. Journal of Solid State Chemistry, 2019, 277, 587-593.	2.9	17
10	Using Ca Fe layered double hydroxide transformation to optimise phosphate removal from waste waters. Applied Clay Science, 2019, 182, 105281.	5.2	34
11	Structure of single sheet iron oxides produced from surfactant interlayered green rusts. Applied Clay Science, 2019, 170, 86-96.	5.2	7
12	Phosphate removal from water by naturally occurring shale, sandstone, and laterite: The role of iron oxides and of soluble species. Comptes Rendus - Geoscience, 2019, 351, 37-47.	1.2	8
13	Abiotically or microbially mediated transformations of magnetite by sulphide species: The unforeseen role of nitrate-reducing bacteria. Corrosion Science, 2018, 142, 31-44.	6.6	7
14	Contribution of long-term hydrothermal experiments for understanding the smectite-to-chlorite conversion in geological environments. Contributions To Mineralogy and Petrology, 2016, 171, 1.	3.1	15
15	Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate. Current Inorganic Chemistry, 2016, 6, 100-118.	0.2	3
16	Reactivity of Callovo-Oxfordian Claystone and its Clay Fraction With Metallic Iron: Role of Non-Clay Minerals in the Interaction Mechanism. Clays and Clay Minerals, 2015, 63, 290-310.	1.3	13
17	Remineralization of ferrous carbonate from bioreduction of natural goethite in the Lorraine iron ore (Minette) by Shewanella putrefaciens. Chemical Geology, 2015, 412, 48-58.	3.3	10
18	Nitrite Reduction by Biogenic Hydroxycarbonate Green Rusts: Evidence for Hydroxy-nitrite Green Rust Formation as an Intermediate Reaction Product. Environmental Science & Technology, 2014, 48, 4505-4514.	10.0	39

#	Article	IF	CITATIONS
19	Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90 ÂC under anoxic and oxic conditions. American Mineralogist, 2013, 98, 163-180.	1.9	42
20	Immobilization of P by oxidation of Fe(II) ions leading to nanoparticle formation and aggregation. Applied Geochemistry, 2013, 35, 325-339.	3.0	31
21	In situ monitoring of lepidocrocite bioreduction and magnetite formation by reflection Mossbauer spectroscopy. American Mineralogist, 2011, 96, 1410-1413.	1.9	21
22	Oxidation modes and thermodynamics of Fell–III oxyhydroxycarbonate green rust: Dissolution–precipitation versus in situ deprotonation. Geochimica Et Cosmochimica Acta, 2010, 74, 953-966.	3.9	76
23	Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Applied Catalysis B: Environmental, 2009, 89, 432-440.	20.2	226
24	Reductive transformation and mineralization of an azo dye by hydroxysulphate green rust preceding oxidation using H2O2 at neutral pH. Chemosphere, 2009, 75, 212-219.	8.2	30
25	Arsenite sequestration at the surface of nano-Fe(OH)2, ferrous-carbonate hydroxide, and green-rust after bioreduction of arsenic-sorbed lepidocrocite by Shewanella putrefaciens. Geochimica Et Cosmochimica Acta, 2009, 73, 1359-1381.	3.9	88
26	Aluminium substitution in iron(II–III)-layered double hydroxides: Formation and cationic order. Journal of Solid State Chemistry, 2008, 181, 2285-2291.	2.9	28
27	Ferrimagnetic properties in Fell–III (oxy)hydroxycarbonate green rusts. Solid State Sciences, 2008, 10, 40-49.	3.2	19
28	Comparative studies of ferric green rust and ferrihydrite coated sand: Role of synthesis routes. Solid State Sciences, 2008, 10, 1342-1351.	3.2	11
29	Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity. Geochimica Et Cosmochimica Acta, 2007, 71, 5450-5462.	3.9	41
30	Vegetation effects on pedogenetic forms of Fe, Al and Si and on clay minerals in soils in southern Switzerland and northern Italy. Geoderma, 2007, 141, 119-129.	5.1	38
31	Fougerite, a new mineral of the pyroaurite-iowaite group: description and crystal structure. Clays and Clay Minerals, 2007, 55, 323-334.	1.3	92
32	Bioreduction of ferric species and biogenesis of green rusts in soils. Comptes Rendus - Geoscience, 2006, 338, 447-455.	1.2	39
33	Speciation of iron; characterisation and structure of green rusts and Fell–III oxyhydroxycarbonate fougerite. Comptes Rendus - Geoscience, 2006, 338, 402-419.	1.2	46
34	Green rusts synthesis by coprecipitation of Fell–Felll ions and mass-balance diagram. Comptes Rendus - Geoscience, 2006, 338, 420-432.	1.2	78
35	Green rusts in electrochemical and microbially influenced corrosion of steel. Comptes Rendus - Geoscience, 2006, 338, 476-487.	1.2	40
36	Formation and crystallographical structure of hydroxysulphate and hydroxycarbonate green rusts synthetised by coprecipitation. Journal of Physics and Chemistry of Solids, 2006, 67, 1016-1019.	4.0	38

#	Article	IF	CITATIONS
37	Mechanisms of formation and transformation of Ni–Fe layered double hydroxides in and containing aqueous solutions. Journal of Physics and Chemistry of Solids, 2005, 66, 911-917.	4.0	20
38	Fougerite and Fell–III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide. Solid State Sciences, 2005, 7, 545-572.	3.2	91
39	Formation of Hydroxysulphate Green Rust 2 as a Single Iron(II-III) Mineral in Microbial Culture. Geomicrobiology Journal, 2005, 22, 389-399.	2.0	58
40	Coprecipitation of Fe(II–III) hydroxycarbonate green rust stabilised by phosphate adsorption. Solid State Sciences, 2004, 6, 117-124.	3.2	114
41	Competitive Formation of Hydroxycarbonate Green Rust 1 versus Hydroxysulphate Green Rust 2 inShewanella putrefaciensCultures. Geomicrobiology Journal, 2004, 21, 79-90.	2.0	40
42	Coprecipitation of Fe(II) and Fe(III) cations in sulphated aqueous medium and formation of hydroxysulphate green rust. Solid State Sciences, 2003, 5, 1055-1062.	3.2	92
43	Coprecipitation thermodynamics of iron(II–III) hydroxysulphate green rust from Fe(II) and Fe(III) salts. Corrosion Science, 2003, 45, 659-676.	6.6	62
44	Formation of â€~ferric green rust' and/or ferrihydrite by fast oxidation of iron(II–III) hydroxychloride green rust. Corrosion Science, 2003, 45, 2435-2449.	6.6	68
45	Iron(II,III) Hydroxycarbonate Green Rust Formation and Stabilization from Lepidocrocite Bioreduction. Environmental Science & Technology, 2002, 36, 16-20.	10.0	174
46	Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochimica Et Cosmochimica Acta, 2002, 66, 829-836.	3.9	226
47	Influence of Phosphate on Corrosion Products of Iron in Chloride-Polluted-Concrete-Simulating Solutions: Ferrihydrite vs Green Rust. Corrosion, 2002, 58, 467-478.	1.1	34
48	Synthesis of Fe(II-III) hydroxysulphate green rust by coprecipitation. Solid State Sciences, 2002, 4, 61-66.	3.2	98
49	Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil. European Journal of Soil Science, 2002, 53, 175-183.	3.9	104
50	Structure and stability of the Fe(II)–Fe(III) green rust "fougerite―mineral and its potential for reducing pollutants in soil solutions. Applied Geochemistry, 2001, 16, 559-570.	3.0	109
51	Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochimica Et Cosmochimica Acta, 2001, 65, 1715-1726.	3.9	131
52	The dry oxidation of tetragonal FeS 1- x mackinawite. Physics and Chemistry of Minerals, 2001, 28, 600-611.	0.8	103
53	Electrochemical formation of a new Fe(II)î—,Fe(III) hydroxy-carbonate green rust: characterisation and morphology. Electrochimica Acta, 2001, 46, 1815-1822.	5.2	74
54	Iron control by equilibria between hydroxy-Green Rusts and solutions in hydromorphic soils. Geochimica Et Cosmochimica Acta, 1999, 63, 3417-3427.	3.9	122

#	Article	IF	CITATIONS
55	Title is missing!. Hyperfine Interactions, 1998, 112, 235-238.	0.5	60
56	Title is missing!. Hyperfine Interactions, 1998, 112, 47-51.	0.5	14
57	Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corrosion Science, 1998, 40, 1547-1560.	6.6	276
58	Thermodynamic Equilibria in Aqueous Suspensions of Synthetic and Natural Fe(II)â^'Fe(III) Green Rusts: Occurrences of the Mineral in Hydromorphic Soils. Environmental Science & Technology, 1998, 32, 1058-1068.	10.0	301
59	Identification of a green rust mineral in a reductomorphic soil by Mossbauer and Raman spectroscopies. Geochimica Et Cosmochimica Acta, 1997, 61, 1107-1111.	3.9	233
60	Conversion electron Mössbauer spectroscopy and X-ray diffraction studies of the formation of carbonate-containing green rust one by corrosion of metallic iron in NaHCO3 and (NaHCO3 + NaCl) solutions. Corrosion Science, 1996, 38, 623-633.	6.6	118
61	The preparation and thermodynamic properties of Fe(II)î—,Fe(III) hydroxide-carbonate (green rust 1); Pourbaix diagram of iron in carbonate-containing aqueous media. Corrosion Science, 1995, 37, 2025-2041.	6.6	245