List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4131977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Rim Between Business Processes and Software Systems. , 2022, , 1810-1836.		0
2	Longevity of risks in software development projects: a comparative analysis with an academic environment. Procedia Computer Science, 2021, 181, 827-834.	2.0	4
3	Expert System that Assists the Cultivation of Mandacaru Aimed at the Production of Water and Food in the Interior of Northeastern Brazil. Lecture Notes in Computer Science, 2021, , 559-573.	1.3	0
4	Home Automation for People with Autism Spectrum Disorder. Lecture Notes in Computer Science, 2021, , 119-141.	1.3	0
5	Running Workshops to Identify Wastes in a Product Development Sample Shop. Advances in Intelligent Systems and Computing, 2021, , 234-243.	0.6	2
6	Extending the scope of reference models for smart factories. Procedia Computer Science, 2021, 180, 102-111.	2.0	4
7	AMPLA. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2021, , 52-78.	0.5	0
8	Using Logical Architecture Models for Inter-Team Management of Distributed Agile Teams. International Journal of Information Technologies and Systems Approach, 2021, 15, 1-17.	1.4	3
9	Leaning processes by mobile technologies in a Product Development Sample Shop. , 2021, , .		1
10	The roles of a Programme and Project Management Office to support collaborative university–industry R&D. Total Quality Management and Business Excellence, 2020, 31, 583-608.	3.8	30
11	Value of project management in university–industry R&D collaborations. International Journal of Managing Projects in Business, 2020, 13, 819-843.	2.5	23
12	An Aligned Reference Model for Digital Factories. , 2020, , .		2
13	Critical factors for benefits realisation in collaborative university-industry R&D programs. International Journal of Project Organisation and Management, 2020, 12, 1.	0.1	5
14	A Unified Reference Model for Smart Cities. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2020, , 162-180.	0.3	2
15	Does the Lean Inception Methodology Contribute to the Software Project Initiation Phase?. Lecture Notes in Computer Science, 2020, , 741-752.	1.3	0
16	Embedded System to Support Skin Cancer Recognition. Lecture Notes in Computer Science, 2020, , 725-740.	1.3	0
17	Architecture Based on Keyword Driven Testing with Domain Specific Language for a Testing System. Lecture Notes in Computer Science, 2020, , 310-316.	1.3	2
18	Systems Development for the Industrial IoT: Challenges from Industry R&D Projects. Computer Communications and Networks, 2019, , 55-78.	0.8	3

RICARDO J MACHADO

3

#	Article	IF	CITATIONS
19	Tailoring PMI and OGC Portfolio Frameworks. Lecture Notes in Computer Science, 2019, , 357-371.	1.3	0
20	From Program Strategic Planning to Program Initiation: Lessons learned from a collaborative University-Industry R&D case study. , 2019, , .		1
21	A logical architecture design method for microservices architectures. , 2019, , .		5
22	An extension of the improving and embedding project management practice framework. International Journal of Managing Projects in Business, 2019, 12, 979-1002.	2.5	5
23	Applying a Method for Measuring the Performance of University-Industry R&D Collaborations: Case Study Analysis. Procedia Computer Science, 2019, 164, 424-432.	2.0	9
24	Key Initiatives to Successfully Manage Collaborative University-Industry R&D: IC-HMI Case Study. Procedia Computer Science, 2019, 164, 414-423.	2.0	4
25	4SRS-SoaML Method for Deriving a Service-Oriented Architecture From Use Cases Within a SPEM Approach. Advances in Business Information Systems and Analytics Book Series, 2019, , 93-114.	0.4	1
26	On the Rim Between Business Processes and Software Systems. Advances in Computer and Electrical Engineering Book Series, 2019, , 170-196.	0.3	4
27	Towards Agile Architecting: Proposing an Architectural Pathway Within an Industry 4.0 Project. Lecture Notes in Business Information Processing, 2019, , 121-136.	1.0	0
28	Inputs from a Model-Based Approach Towards the Specification of Microservices Logical Architectures: An Experience Report. Lecture Notes in Computer Science, 2019, , 473-488.	1.3	1
29	Adoption of Architecture Reference Models for Industrial Information Management Systems. , 2018, , .		7
30	Patient-centric e-Prescription Services - An Integrated System Architecture Proposal. , 2018, , .		1
31	Mapping between PMI and OGC Artefacts for Project Portfolio Management. , 2018, , .		1
32	UH4SP: A Software Platform For Integrated Management Of Connected Smart Plants. , 2018, , .		4
33	Incremental architectural requirements for agile modeling. , 2018, , .		1
34	Deriving user stories for distributed scrum teams from iterative refinement of architectural models. , 2018, , .		1
35	Business Process Modeling Languages and their Data Representation Capabilities. , 2018, , .		2

An experience report on using architectural models within distributed scrum teams contexts. , 2018, , .

#	Article	IF	CITATIONS
37	IT Project Management Tool Requirements to Support Collaborative University-Industry R&D. , 2018, , .		Ο
38	Project Management Practices for Collaborative University-Industry R&D: A Hybrid Approach. Procedia Computer Science, 2018, 138, 805-814.	2.0	14
39	A Conceptual Social Media Tool for Supporting Collaborative University-Industry R&D Programs. , 2018, , .		4
40	Modeling in Agile Software Development: Decomposing Use Cases Towards Logical Architecture Design. Lecture Notes in Computer Science, 2018, , 396-408.	1.3	5
41	Specifying Software Services for Fog Computing Architectures Using Recursive Model Transformations. , 2018, , 153-181.		8
42	Tailoring ISO/IEC/IEEE 29119-3 Standard for Small and Medium-Sized Enterprises. , 2018, , .		3
43	A retrofitting auction service business model proposal within a smart city context. , 2018, , .		Ο
44	An Agile Modeling Oriented Process for Logical Architecture Design. Lecture Notes in Business Information Processing, 2018, , 260-275.	1.0	6
45	Input and output artefacts in portfolio practices from the OGC standard for Management of Portfolios. , 2017, , .		2
46	Analysis of dengue outbreaks using big data analytics and social networks. , 2017, , .		7
47	A Method for Measuring the Success of Collaborative University-Industry R&D Funded Contracts. Procedia Computer Science, 2017, 121, 451-460.	2.0	14
48	Planning benefits realization in a collaborative university-industry R&D funded program. , 2017, , .		11
49	Assessment of maturity models for smart cities supported by maturity model design principles. , 2017, , .		12
50	Transition from Information Systems to Service-Oriented Logical Architectures: Formalizing Steps and Rules with QVT. , 2017, , 247-270.		4
51	An Analysis of the Commonality and Differences Between ASPICE and ISO26262 in the Context of Software Development. Communications in Computer and Information Science, 2017, , 216-227.	0.5	3
52	Applying the Paraconsistent Annotated Evidential Logic EÏ,, in a Solar Tracker for Photovoltaic Panels: An Analytical Approach. IFIP Advances in Information and Communication Technology, 2016, , 280-287.	0.7	0
53	Project and Program Management Implications in the Portfolio Management of IT Projects in Applied R&D Organizations. , 2016, , .		7

54 Adopting Logical Architectures within Agile Projects. , 2016, , .

#	Article	IF	CITATIONS
55	A Three-Dimensional Approach for a Quality-Based Alignment Between Requirements and Architecture. Lecture Notes in Business Information Processing, 2016, , 112-125.	1.0	2
56	Architectural Element Points: Estimating Software Development Effort by Analysis of Logical Architectures. Lecture Notes in Business Information Processing, 2016, , 72-84.	1.0	0
57	Perceptions of Different Stakeholders on Managing Collaborative University-Industry R&D Funded Contracts. Procedia Computer Science, 2016, 100, 878-887.	2.0	6
58	Mapping Between Artefacts and Portfolio Processes from the PMI Standard for Portfolio Management. Lecture Notes in Business Information Processing, 2016, , 117-130.	1.0	5
59	Business Modeling and Requirements in RUP: A Dependency Analysis of Activities, Tasks and Work Products. Lecture Notes in Computer Science, 2016, , 595-607.	1.3	0
60	Modeling an IaaS Broker Based on Two Cloud Computing Reference Models. , 2016, , .		2
61	Dependency Analysis Between PMI Portfolio Management Processes. Lecture Notes in Computer Science, 2016, , 288-300.	1.3	3
62	iFloW: An Integrated Logistics Software System for Inbound Supply Chain Traceability. Proceedings of the I-ESA Conference, 2016, , 187-197.	0.4	3
63	MATRA: A Framework for Assessing Model-Based Approaches on the Transformation Between Requirements and Architecture. Lecture Notes in Business Information Processing, 2016, , 321-332.	1.0	1
64	Requirements in Engineering Projects. Lecture Notes in Management and Industrial Engineering, 2016, ,	0.4	20
65	Using Scrum Together with UML Models: A Collaborative University-Industry R&D Software Project. Lecture Notes in Computer Science, 2016, , 480-495.	1.3	12
66	A Program and Project Management Approach for Collaborative University-industry R&D Funded Contracts. Procedia Computer Science, 2015, 64, 1065-1074.	2.0	28
67	Deriving UML Logical Architectures of Traceability Business Processes Based on a GS1 Standard. Lecture Notes in Computer Science, 2015, , 528-543.	1.3	2
68	A three-dimensional, requirements-based, balanced scorecard business model. , 2015, , .		4
69	Power Optimization in Photovoltaic Panels Through the Application of Paraconsistent Annotated Evidential Logic EÏ". IFIP Advances in Information and Communication Technology, 2015, , 655-661.	0.7	2
70	Exploring a Three-Dimensional, Requirements-Based, Balanced Scorecard Business Model: On the Elicitation and Generation of a Business Model Canvas. , 2015, , .		4
71	An Empirical Study on the Estimation of Size and Complexity of Software Applications with Function Points Analysis. , 2014, , .		7
72	Modularization of Logical Software Architectures for Implementation with Multiple Teams. , 2014, , .		2

#	Article	IF	CITATIONS
73	On the Decomposition of Use Cases for the Refinement of Software Requirements. , 2014, , .		10
74	Derivation of Data-Driven Software Models from Business Process Representations. , 2014, , .		5
75	An OMG-based Meta-Framework for Alignment of IS/IT Architecture with Business Models. , 2014, , .		5
76	Delivering User Stories for Implementing Logical Software Architectures by Multiple Scrum Teams. Lecture Notes in Computer Science, 2014, , 747-762.	1.3	8
77	Introduction to Special Issue: Quality in Information and Communications Technology. Innovations in Systems and Software Engineering, 2014, 10, 1-2.	2.1	4
78	Generating a Business Model Canvas through Elicitation of Business Goals and Rules from Process-Level Use Cases. Lecture Notes in Business Information Processing, 2014, , 276-289.	1.0	7
79	Importance of Risk Process in Management Software Projects in Small Companies. Lecture Notes in Computer Science, 2014, , 358-365.	1.3	2
80	An Application to Select Collaborative Project Management Software Tools. Advances in Intelligent Systems and Computing, 2014, , 467-476.	0.6	7
81	From Business Process Models to Use Case Models: A Systematic Approach. Lecture Notes in Business Information Processing, 2014, , 167-181.	1.0	21
82	Using Process-Level Use Case Diagrams to Infer the Business Motivation Model with a RUP-Based Approach. , 2014, , 123-134.		6
83	Using the NIST Reference Model for Refining Logical Architectures. Lecture Notes in Computer Science, 2014, , 185-199.	1.3	5
84	Project-Based Learning. Advances in Higher Education and Professional Development Book Series, 2014, , 230-249.	0.2	1
85	Development Framework Pattern for Pervasive Information Systems. Advances in Systems Analysis, Software Engineering, and High Performance Computing Book Series, 2014, , 161-185.	0.5	0
86	Generating a Business Model through the Elicitation of Business Goals and Rules within a SPEM Approach. Communications in Computer and Information Science, 2014, , 47-58.	0.5	4
87	RUP Alignment and Coverage Analysis of CMMI ML2 Process Areas for the Context of Software Projects Execution. Lecture Notes in Business Information Processing, 2014, , 214-228.	1.0	0
88	An empirical study on the estimation of software development effort with use case points. , 2013, , .		11
89	Modeling the alignment between business and IS/IT. , 2013, , .		7
90	A Transformation of Business Process Models into Software-Executable Models Using MDA. Lecture Notes in Business Information Processing, 2013, , 147-167.	1.0	5

4

#	Article	IF	CITATIONS
91	Transition from Process- to Product-Level Perspective for Business Software. Lecture Notes in Business Information Processing, 2013, , 268-275.	1.0	6
92	Applicability of Risk Process in Software Projects in Accordance with ISO 31.000:2009. IFIP Advances in Information and Communication Technology, 2013, , 734-741.	0.7	0
93	Aligning Domain-Related Models for Creating Context for Software Product Design. Lecture Notes in Business Information Processing, 2013, , 168-190.	1.0	4
94	A Demonstration Case on Steps and Rules for the Transition from Process-Level to Software Logical Architectures in Enterprise Models. Lecture Notes in Business Information Processing, 2013, , 277-291.	1.0	2
95	A reduced set of RUP roles to small software development teams. , 2012, , .		9
96	A Software Framework for Supporting Ubiquitous Business Processes: An ANSI/ISA-95 Approach. , 2012, , .		2
97	Ontologies for Product and Process Traceability at Manufacturing Organizations: A Software Requirements Approach. , 2012, , .		6
98	Experimental Software Engineering in Educational Context. , 2012, , .		0
99	Modeling Organizational Information System Architecture Using "Complex Networks" Concepts. , 2012, , .		2
100	BIM: A Methodology to Transform Business Processes into Software Systems. Lecture Notes in Business Information Processing, 2012, , 39-58.	1.0	4
101	From Business Process Modeling to Data Model: A Systematic Approach. , 2012, , .		29
102	Derivation of Process-Oriented Logical Architectures: An Elicitation Approach for Cloud Design. Lecture Notes in Computer Science, 2012, , 44-58.	1.3	16
103	On the refinement of use case models with variability support. Innovations in Systems and Software Engineering, 2012, 8, 51-64.	2.1	11
104	Mapping RUP Roles to Small Software Development Teams. Lecture Notes in Business Information Processing, 2012, , 59-70.	1.0	16
105	Profiling and Framing Structures for Pervasive Information Systems Development. Communications in Computer and Information Science, 2012, , 283-293.	0.5	1
106	On the Use of Model Transformations for the Automation of the 4SRS Transition Method. Lecture Notes in Business Information Processing, 2012, , 249-264.	1.0	2
107	A Case Studies Approach to the Analysis of Profiling and Framing Structures for Pervasive Information Systems. International Journal of Web Portals, 2012, 4, 1-18.	1.1	1

108 An Approach to Software Process Design and Implementation Using Transition Rules. , 2011, , .

#	Article	IF	CITATIONS
109	Tailoring RUP to Small Software Development Teams. , 2011, , .		14
110	Scenario-Based Modeling in Industrial Information Systems. International Federation for Information Processing, 2010, , 19-30.	0.4	1
111	Dependency Analysis between CMMI Process Areas. Lecture Notes in Computer Science, 2010, , 263-275.	1.3	8
112	An approach to improving software inspections performance. , 2010, , .		12
113	Support for variability in use case modeling with refinement. , 2010, , .		1
114	Quantitative Analysis of Best Practices Models in the Software Domain. , 2010, , .		7
115	On the Derivation of Class Diagrams from Use Cases and Logical Software Architectures. , 2010, , .		11
116	Size and Complexity Attributes for Multimodel Improvement Framework Taxonomy. , 2010, , .		7
117	The UML «include» Relationship and the Functional Refinement of Use Cases. , 2010, , .		4
118	The UML «extend» Relationship as Support for Software Variability. Lecture Notes in Computer Science, 2010, , 471-475.	1.3	3
119	Software Process Improvement in Multimodel Environments. , 2009, , .		9
120	Multistage Model Transformations in Software Product Lines. , 2009, , .		0
121	Inception of Software Validation and Verification Practices within CMMI Level 2. , 2009, , .		12
122	An Ontology-Based Approach to Model-Driven Software Product Lines. , 2009, , .		4
123	Model-based Methodologies for Pervasive and Embedded Software. , 2009, , .		Ο
124	Introduction to special issue: model-based development methodologies. Innovations in Systems and Software Engineering, 2009, 5, 1-3.	2.1	3
125	A model-driven approach for the derivation of architectural requirements of software product lines. Innovations in Systems and Software Engineering, 2009, 5, 65-78.	2.1	8
126	Work in progress - IEEEXtreme: From a student competition to the promotion of real-world programming education. , 2009, , .		2

#	Article	IF	CITATIONS
127	A Requirements Engineering and Management Training Course for Software Development Professionals. , 2009, , .		12
128	Refinement of Software Product Line Architectures through Recursive Modeling Techniques. Lecture Notes in Computer Science, 2009, , 411-422.	1.3	10
129	Transformation Patterns for Multi-staged Model Driven Software Development. , 2008, , .		10
130	Message from the Organizers. , 2008, , .		0
131	Model-Driven Development for Pervasive Information Systems. , 2008, , 45-82.		5
132	Automated Information Systems Generation for Process-Oriented Organizations. , 2007, , .		5
133	Model Driven Development of Software Product Lines. , 2007, , .		3
134	Model-Driven Software Development for Pervasive Information Systems Implementation. , 2007, , .		4
135	Problems and Pitfalls in a CMMI level 3 to level 4 Migration Process. , 2007, , .		3
136	Automatic Generation of User Interfaces from Domain and Use Case Models. , 2007, , .		6
137	Message from the Organizers. , 2007, , .		Ο
138	Teaching embedded systems engineering in a software-oriented computing degree. Proceedings - Frontiers in Education Conference, FIE, 2007, , .	0.0	7
139	Adopting Computational Independent Models for Derivation of Architectural Requirements of Software Product Lines. , 2007, , .		6
140	Modeling the Experimental Software Engineering Process. , 2007, , .		6
141	Testing Aspect Oriented Programs: an Approach Based on the Coverage of the Interactions among Advices and Methods. , 2007, , .		4
142	Automating Mappings between Use Case Diagrams and Feature Models for Software Product Lines. , 2007, , .		22
143	Requirements Validation: Execution of UML Models with CPN Tools. International Journal on Software Tools for Technology Transfer, 2007, 9, 353-369.	1.9	19
144	Automating Mappings between Use Case Diagrams and Feature Models for Software Product Lines. , 2007, , .		1

#	Article	IF	CITATIONS
145	MBD/MOMPES 2006 Committees. , 2006, , .		0
146	Refinement of Software Architectures by Recursive Model Transformations. Lecture Notes in Computer Science, 2006, , 422-428.	1.3	23
147	A Two-Year Software Engineering M.Sc. Degree Designed Under the Bologna Declaration Principles. , 2006, , .		1
148	A Demonstration Case on the Transformation of Software Architectures for Service Specification. , 2006, , 235-244.		2
149	INTEGRATION OF EMBEDDED SOFTWARE WITH CORPORATE INFORMATION SYSTEMSThis work has been supported by projects STACOS (POSI/CHS/48875/2002) and METHODES (POSI/CHS/37334/2001). , 2005, , 169-178.		1
150	Specification of Requirements Models. , 2005, , 47-68.		10
151	A Multi-Level Design Pattern for Embedded Software. , 2004, , 247-256.		1
152	Heterogeneous Information Systems Integration: Organizations and Methodologies. Lecture Notes in Computer Science, 2002, , 629-643.	1.3	8
153	Can UML be a System-Level Language for Embedded Software?. IFIP Advances in Information and Communication Technology, 2002, , 1-10.	0.7	2
154	From Use Cases to Objects: An Industrial Information Systems Case Study Analysis. , 2001, , 319-328.		15
155	Modeling industrial embedded systems with UML. , 2000, , .		20
156	SOFHIA: A CAD Environment to Design Digital Control Systems. , 1997, , 86-88.		6
157	A Petri net meta-model to develop software components for embedded systems. , 0, , .		7
158	System-level object-orientation in the specification and validation of embedded systems. , 0, , .		3
159	Project-Based Learning. , 0, , 1931-1951.		1
160	Systematic Use of Software Development Patterns through a Multilevel and Multistage Classification. , 0, , 304-333.		2
161	Business Modeling in Process-Oriented Organizations for RUP-Based Software Development. , 0, , 98-117.		3