Yong-Zhou Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4131752/publications.pdf

Version: 2024-02-01

187 papers 5,508 citations

43 h-index 61 g-index

216 all docs

216 docs citations

216 times ranked

5192 citing authors

#	Article	IF	CITATIONS
1	Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food Chemistry, 2008, 106, 1264-1270.	8.2	183
2	Porous Organic Polymer-Derived Nanopalladium Catalysts for Chemoselective Synthesis of Antitumor Benzofuro[2,3- <i>b</i>) pyrazine from 2-Bromophenol and Isonitriles. Organic Letters, 2019, 21, 4929-4932.	4.6	147
3	BrÃ,nsted Acid-Catalyzed Propargylation/Cycloisomerization Tandem Reaction: One-Pot Synthesis of Substituted Oxazoles from Propargylic Alcohols and Amides. Journal of Organic Chemistry, 2009, 74, 3148-3151.	3.2	126
4	Ce(OTf) ₃ -Catalyzed [3 + 2] Cycloaddition of Azides with Nitroolefins: Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2014, 79, 4463-4469.	3.2	117
5	Electrochemically enabled synthesis of sulfide imidazopyridines <i>via</i> a radical cyclization cascade. Green Chemistry, 2020, 22, 6334-6339.	9.0	117
6	Electrochemical sulfonylation of thiols with sulfonyl hydrazides: a metal- and oxidant-free protocol for the synthesis of thiosulfonates. Green Chemistry, 2018, 20, 4428-4432.	9.0	110
7	Isolation and characterization of melanin from Osmanthus fragrans' seeds. LWT - Food Science and Technology, 2006, 39, 496-502.	5.2	106
8	Halogen-mediated electrochemical organic synthesis. Organic and Biomolecular Chemistry, 2020, 18, 5315-5333.	2.8	98
9	Samarium(III)-Catalyzed C(sp ³)â€"H Bond Activation: Synthesis of Indolizines <i>via</i> Câ€"C and Câ€"N Coupling between 2-Alkylazaarenes and Propargylic Alcohols. Organic Letters, 2014, 16, 580-583.	4.6	96
10	Electrochemical Difunctionalization of Olefines: Access to Selenomethylâ€Substituted Cyclic Ethers or Lactones. Advanced Synthesis and Catalysis, 2020, 362, 506-511.	4.3	96
11	Direct C–H sulfenylation of quinoxalinones with thiols under visible-light-induced photocatalyst-free conditions. Green Chemistry, 2019, 21, 6241-6245.	9.0	94
12	Porous Ligand Creates New Reaction Route: Bifunctional Single-Atom Palladium Catalyst for Selective Distannylation of Terminal Alkynes. CheM, 2020, 6, 2300-2313.	11.7	92
13	Electrochemical Synthesis of 1-Naphthols by Intermolecular Annulation of Alkynes with 1,3-Dicarbonyl Compounds. Organic Letters, 2020, 22, 724-728.	4.6	89
14	Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chemistry, 2007, 103, 913-918.	8.2	83
15	Copper-Catalyzed Decarboxylative/Click Cascade Reaction: Regioselective Assembly of 5-Selenotriazole Anticancer Agents. Organic Letters, 2018, 20, 925-929.	4.6	83
16	Synthesis and antitumor activities of novel thiourea α-aminophosphonates from dehydroabietic acid. European Journal of Medicinal Chemistry, 2013, 69, 508-520.	5.5	80
17	Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chemistry, 2019, 21, 3807-3811.	9.0	76
18	Antioxidant potential of ethanolic extract of Polygonum cuspidatum and application in peanut oil. Food Chemistry, 2007, 105, 1518-1524.	8.2	66

#	Article	IF	CITATIONS
19	Chemoselective Cascade Synthesis of Nâ€Fused Heterocycles <i>via</i> Silver(I) Triflateâ€Catalyzed Friedel–Crafts/Nâ€C Bond Formation Sequence. Advanced Synthesis and Catalysis, 2010, 352, 3215-3222.	4.3	65
20	Electrochemically Enabled Double C–H Activation of Amides: Chemoselective Synthesis of Polycyclic Isoquinolinones. Organic Letters, 2019, 21, 9841-9845.	4.6	64
21	Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization: Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie - International Edition, 2019, 58, 2448-2453.	13.8	64
22	Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chemistry, 2010, 121, 497-502.	8.2	63
23	Synthesis, Cytotoxic Activity, and DNA Binding Properties of Copper (II) Complexes with Hesperetin, Naringenin, and Apigenin. Bioinorganic Chemistry and Applications, 2009, 2009, 1-9.	4.1	60
24	One-Pot Synthesis of Substituted Furans Using Cu(OTf) ₂ -Catalyzed Propargylation/Cycloisomerization Tandem Reaction. ACS Combinatorial Science, 2009, 11, 103-109.	3.3	60
25	Design, synthesis and inÂvitro evaluation of novel ursolic acid derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2015, 95, 435-452.	5.5	59
26	Synthesis and antioxidant activities of novel 4-Schiff base-7-benzyloxy-coumarin derivatives. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 6811-6815.	2.2	56
27	Synthesis and antitumor activities of novel α-aminophosphonates dehydroabietic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5283-5289.	2.2	55
28	Metal-free visible-light induced cyclization/substitution cascade reaction of alkyne-tethered cyclohexadienones and diselenides: access to 5-hydroxy-3-selenyl-4a,8a-dihydro-2 <i>H</i> -chromen-6(5 <i>H</i>)-ones. Green Chemistry, 2019, 21, 3547-3551.	9.0	55
29	Facile one-pot synthesis of three different substituted thiazoles from propargylic alcohols. Organic and Biomolecular Chemistry, 2010, 8, 3259.	2.8	54
30	Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research, 2011, 20, 475-481.	2.4	53
31	Synthesis of rutaecarpine alkaloids <i>via</i> an electrochemical cross dehydrogenation coupling reaction. Green Chemistry, 2019, 21, 5517-5520.	9.0	53
32	Metal―and Oxidantâ€free Electrosynthesis of 1,2,3â€Thiadiazoles from Element Sulfur and Nâ€tosyl Hydrazones. Advanced Synthesis and Catalysis, 2019, 361, 1756-1760.	4.3	52
33	Visibleâ€Lightâ€Promoted Selenylative Spirocyclization of Indolylâ€ynones toward the Formation of 3â€Selenospiroindolenine Anticancer Agents. Chemistry - an Asian Journal, 2020, 15, 1536-1539.	3.3	52
34	Electrochemical Sulfonylation of Alkynes with Sulfonyl Hydrazides: A Metal―and Oxidantâ€Free Protocol for the Synthesis of Alkynyl Sulfones. Advanced Synthesis and Catalysis, 2020, 362, 2160-2167.	4.3	52
35	Electrochemical Dehydrogenative Coupling of Alcohols with Hydrogen Phosphoryl Compounds: A Green Protocol for Pâ^'O Bond Formation. Advanced Synthesis and Catalysis, 2019, 361, 1761-1765.	4.3	51
36	Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes. Nano Research, 2022, 15, 1500-1508.	10.4	51

3

#	Article	IF	CITATIONS
37	Regioselective Synthesis of 1,3,5-Substituted Benzenes via the InCl ₃ /2-Iodophenol-Catalyzed Cyclotrimerization of Alkynes. Journal of Organic Chemistry, 2011, 76, 8472-8476.	3.2	50
38	Electrochemical Synthesis of 3,5â€Disubstitutedâ€1,2,4â€thiadiazoles through NH ₄ 1â€Mediated Dimerization of Thioamides. Advanced Synthesis and Catalysis, 2018, 360, 4043-4048.	4.3	49
39	Synthesis and biological evaluation of novel aniline-derived asiatic acid derivatives as potential anticancer agents. European Journal of Medicinal Chemistry, 2014, 86, 175-188.	5.5	48
40	Antioxidant capacity of the extracts from pulp of Osmanthus fragrans and its components. LWT - Food Science and Technology, 2010, 43, 319-325.	5.2	46
41	Highly Regio- and Stereoselective Markovnikov Hydrosilylation of Alkynes Catalyzed by High-Nuclearity {Co ₁₄ } Clusters. ACS Catalysis, 2021, 11, 6944-6950.	11.2	46
42	PTSA-catalyzed Mannich-type–cyclization–oxidation tandem reactions: one-pot synthesis of 1,3,5-substituted pyrazoles from aldehydes, hydrazines and alkynes. Organic and Biomolecular Chemistry, 2012, 10, 4696.	2.8	45
43	Palladium-Metalated Porous Organic Polymers as Recyclable Catalysts for the Chemioselective Synthesis of Thiazoles from Thiobenzamides and Isonitriles. Organic Letters, 2018, 20, 2494-2498.	4.6	45
44	Regioselective Synthesis of βâ€Aryl Enaminones and 1,4,5―Trisubstituted 1,2,3â€Triazoles from Chalcones and Benzyl Azides. Advanced Synthesis and Catalysis, 2014, 356, 3347-3355.	4.3	43
45	Palladium-catalyzed synthesis of benzoxazoles by the cleavage reaction of carbon–carbon triple bonds with o-aminophenol. Green Chemistry, 2014, 16, 2132.	9.0	41
46	Palladium-metalated porous organic polymers as recyclable catalysts for chemoselective decarbonylation of aldehydes. Chemical Communications, 2018, 54, 8446-8449.	4.1	41
47	Characterisation and free radical scavenging activities of novel red pigment from Osmanthus fragrans' seeds. Food Chemistry, 2009, 112, 909-913.	8.2	40
48	Synthesis and antitumor activities of novel \hat{l}_{\pm} -aminophosphonate derivatives containing an alizarin moiety. European Journal of Medicinal Chemistry, 2014, 83, 116-128.	5.5	40
49	Copper-mediated cross-coupling–cyclization–oxidation: a one-pot reaction to construct polysubstituted pyrroles. Chemical Communications, 2014, 50, 4795.	4.1	39
50	A novel methodology for synthesis of dihydropyrazole derivatives as potential anticancer agents. Organic and Biomolecular Chemistry, 2014, 12, 2028-2032.	2.8	39
51	Synthesis and antitumor activities of novel rhein \hat{l}_{\pm} -aminophosphonates conjugates. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 501-507.	2.2	39
52	Synthesis and pharmacological evaluation of dehydroabietic acid thiourea derivatives containing bisphosphonate moiety as an inducer of apoptosis. European Journal of Medicinal Chemistry, 2016, 108, 381-391.	5.5	39
53	Antitumor lignanamides from the aerial parts of Corydalis saxicola. Phytomedicine, 2016, 23, 1599-1609.	5.3	38
54	Transition-metal-free C–N and C–C formation: synthesis of benzo[4,5]imidazo[1,2- <i>a</i>) pyridines and 2-pyridones from ynones. Green Chemistry, 2018, 20, 2007-2012.	9.0	38

#	Article	IF	CITATIONS
55	Catalyst-free synthesis of fused 1,2,3-triazole and isoindoline derivatives via an intramolecular azide–alkene cascade reaction. Green Chemistry, 2017, 19, 656-659.	9.0	36
56	Regioselective Palladium-Catalyzed Decarboxylative Cross-Coupling Reaction of Alkenyl Acids with Coumarins: Synthesis of 3-Styrylcoumarin Compounds. Journal of Organic Chemistry, 2015, 80, 2407-2412.	3.2	35
57	Porous Organic Polymer as a Heterogeneous Ligand for Highly Regio- and Stereoselective Nickel-Catalyzed Hydrosilylation of Alkyne. Organic Letters, 2018, 20, 7748-7752.	4.6	35
58	Atom-Economical Chemoselective Synthesis of 1,4-Enynes from Terminal Alkenes and Propargylic Alcohols Catalyzed by Cu(OTf) ₂ . Journal of Organic Chemistry, 2013, 78, 2742-2745.	3.2	34
59	Silver-mediated C–H bond functionalization: one-pot to construct substituted indolizines from 2-alkylazaarenes with alkynes. Tetrahedron, 2014, 70, 6717-6722.	1.9	34
60	Photocatalyst-controlled and visible light-enabled selective oxidation of pyridinium salts. Science China Chemistry, 2021, 64, 753-760.	8.2	34
61	A facile synthesis of 2,5-disubstituted oxazoles via a copper-catalyzed cascade reaction of alkenes with azides. Chemical Communications, 2015, 51, 17772-17774.	4.1	32
62	Catalyst-Free Synthesis of Pyrrolo $[1,2-\langle i\rangle a\langle i\rangle]$ quinolines via Dehydration/ $[3+2]$ Cycloaddition Directly from 2-Methylquinolines, Aldehydes, and Alkynoates. Journal of Organic Chemistry, 2017, 82, 4289-4296.	3.2	31
63	The indium-catalysed hydration of alkynes using substoichiometric amounts of PTSA as additive. Tetrahedron, 2013, 69, 3775-3781.	1.9	30
64	Photocatalytic Construction of S–S and C–S Bonds Promoted by Acridinium Salt: An Unexpected Pathway To Synthesize 1,2,4-Dithiazoles. Organic Letters, 2018, 20, 4819-4823.	4.6	30
65	Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with $\hat{l}\pm$ -oxocarboxylic acids. Chinese Chemical Letters, 2023, 34, 107537.	9.0	30
66	Transition Metalâ€Free Synthesis of 3â€Alkynylpyrroleâ€2 arboxylates <i>via</i> Michael Addition/Intramolecular Cyclodehydration. Advanced Synthesis and Catalysis, 2016, 358, 1897-1902.	4.3	29
67	Atom-economical chemoselective synthesis of furocoumarins via cascade palladium catalyzed oxidative alkoxylation of 4-oxohydrocoumarins and alkenes. RSC Advances, 2015, 5, 4972-4975.	3.6	28
68	Palladium-Catalyzed Synthesis of 5-Iminopyrrolones through Isocyanide Double Insertion Reaction with Terminal Alkynes and Water. Journal of Organic Chemistry, 2016, 81, 11813-11818.	3.2	28
69	Efficient access to \hat{l}^2 -amino acid ester/ \hat{l}^2 -amino ketone derivatives <i>via</i> photocatalytic radical alkoxycabonylimidation/carbonylimidation of alkenes. Organic Chemistry Frontiers, 2022, 9, 2522-2528.	4.5	28
70	Antioxidant activities of Liquidambar formosana Hance leaf extracts. Medicinal Chemistry Research, 2010, 19, 166-176.	2.4	26
71	Synthesis and antitumor activity evaluation of maleopimaric acid N-aryl imide atropisomers. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6755-6758.	2.2	26
72	An Unexpected Domino Reaction of βâ€Keto Sulfones with Acetylene Ketones Promoted by Base: Facile Synthesis of 3(2 <i>H</i>)â€Furanones and Sulfonylbenzenes. Advanced Synthesis and Catalysis, 2017, 359, 4025-4035.	4.3	26

#	Article	IF	Citations
73	Synthesis, antiproliferative and apoptosis-inducing effects of novel asiatic acid derivatives containing α-aminophosphonates. RSC Advances, 2016, 6, 62890-62906.	3.6	25
74	Toward sensitive determination of ammonium in field: A novel fluorescent probe, 4,5-dimethoxyphthalaldehyde along with a hand-held portable laser diode fluorometer. Sensors and Actuators B: Chemical, 2018, 276, 356-361.	7.8	25
75	Simultaneous Construction of Câ^'Se And Câ^'S Bonds via the Visibleâ€Lightâ€Mediated Multicomponent Cascade Reaction of Diselenides, Alkynes, and SO ₂ . Chemistry - an Asian Journal, 2019, 14, 3264-3268.	3.3	25
76	Electrochemical-mediated fixation of CO ₂ : three-component synthesis of carbamate compounds from CO ₂ , amines and <i>N</i> -alkenylsulfonamides. Green Chemistry, 2021, 23, 4328-4332.	9.0	25
77	Indium(III) Chloride Catalyzed Conjugate Addition Reaction of Alkynylsilanes to Acrylate Esters. Journal of Organic Chemistry, 2012, 77, 3557-3562.	3.2	24
78	Synthesis of Polysubstituted Imidazoles and Pyridines <i>via</i> Samarium(III) Triflateâ€Catalyzed [2+2+1] and [4+2] Annulations of Unactivated Aromatic Alkenes with Azides. Advanced Synthesis and Catalysis, 2015, 357, 3229-3241.	4.3	23
79	Photoinduced Cascade Reaction of Tertiary Amines with Sulfonyl Azides: Synthesis of Amidine Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3656-3660.	4.3	23
80	Simultaneous reduction of nitro- to amino-group in the palladium-catalyzed Suzuki cross-coupling reaction. Tetrahedron Letters, 2008, 49, 2634-2637.	1.4	22
81	Synthesis and enantiomeric recognition ability of 22-crown-6 ethers derived from rosin acid and BINOL. Tetrahedron: Asymmetry, 2011, 22, 381-386.	1.8	22
82	Design, synthesis and inÂvitro evaluation of novel dehydroabietic acid derivatives containing a dipeptide moiety as potential anticancer agents. European Journal of Medicinal Chemistry, 2015, 89, 370-385.	5 . 5	22
83	Acid-catalyzed tandem reaction for the synthesis of pyridine derivatives via C/C(sp ³)–N bond cleavage of enones and primary amines. RSC Advances, 2017, 7, 13123-13129.	3.6	22
84	Mappianines Aâ^'E, structurally diverse monoterpenoid indole alkaloids from Mappianthus iodoides. Phytochemistry, 2018, 145, 68-76.	2.9	22
85	Electrochemically Enabled Selenium Catalytic Synthesis of 2,1-Benzoxazoles from <i>o</i> -Nitrophenylacetylenes. Journal of Organic Chemistry, 2021, 86, 16121-16127.	3.2	22
86	Electrochemically-mediated Câ€"H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Organic Chemistry Frontiers, 2022, 9, 781-787.	4.5	22
87	Synthesis and antitumor activities of novel dipeptide derivatives derived from dehydroabietic acid. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1511-1518.	2.2	21
88	Palladium-Catalyzed Three-Component Reaction: A Novel Method for the Synthesis of <i>N</i> -Acyl Propiolamides. Organic Letters, 2018, 20, 7117-7120.	4.6	21
89	Electrochemically Mediated Direct C(<i>sp</i> ³)â^H Sulfonylation of Xanthene Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 726-731.	4.3	21
90	Antioxidant activity of alcoholic extract of Agrimonia pilosa Ledeb. Medicinal Chemistry Research, 2010, 19, 448-461.	2.4	20

#	Article	IF	CITATIONS
91	Palladium($\langle scp \rangle ii \langle scp \rangle$)-catalyzed Câ \in "C and Câ \in "O bond formation for the synthesis of C $\langle sub \rangle 1 \langle sub \rangle$ -benzoyl isoquinolines from isoquinoline N-oxides and nitroalkenes. Chemical Communications, 2016, 52, 10028-10031.	4.1	20
92	TEMPO-catalyzed synthesis of 5-substituted isoxazoles from propargylic ketones and TMSN ₃ . RSC Advances, 2016, 6, 58988-58993.	3.6	20
93	A one-pot approach to 4,5-dihydropyrazoles from ketones, arylacetylenes, and hydrazines. Tetrahedron, 2014, 70, 1621-1628.	1.9	19
94	Regioselective Synthesis of Selenide Ethers through a Decarboxylative Coupling Reaction. Advanced Synthesis and Catalysis, 2017, 359, 3950-3961.	4.3	19
95	Atom-Economic Synthesis of 4-Pyrones from Diynones and Water. Molecules, 2017, 22, 109.	3.8	19
96	3-[(3-Dehydroabietamidopropyl)dimethylammonio]-1-propane-sulfonate as a new type of chiral surfactant for enantiomer separation in micellar electrokinetic chromatography. Journal of Chromatography A, 2007, 1145, 246-249.	3.7	18
97	Withanolides from <i>Physalis alkekengi</i> var. <i>francheti</i> . Helvetica Chimica Acta, 2008, 91, 2284-2291.	1.6	18
98	Isolation and characterization of pigment from Cinnamomum burmannii' peel. Food Research International, 2011, 44, 2289-2294.	6.2	18
99	Synthesis, Cytotoxicity, DNA Binding and Apoptosis of Rhein-Phosphonate Derivatives as Antitumor Agents. International Journal of Molecular Sciences, 2013, 14, 9424-9439.	4.1	18
100	Synthesis and Biological Evaluation of Novel Dehydroabietic Acid Derivatives Conjugated with Acyl-Thiourea Peptide Moiety as Antitumor Agents. International Journal of Molecular Sciences, 2015, 16, 14571-14593.	4.1	18
101	Electrochemically mediated three-component synthesis of isothioureas using thiols as sulfur source. Green Synthesis and Catalysis, 2023, 4, 41-45.	6.8	18
102	Enantioselective Friedel–Crafts Alkylation of <i>N</i> àêMethylindoles with Nitroalkenes Catalyzed by Chiral Bifunctional Abieticâ€Acidâ€Derived Thioureaâ€Zn ^{ll} Complexes. European Journal of Organic Chemistry, 2012, 2012, 5839-5843.	2.4	17
103	Xantphos Doped POPsâ€PPh ₃ as Heterogeneous Ligand for Cobaltâ€Catalyzed Highly Regio―and Stereoselective Hydrosilylation of Alkynes. Chemistry - an Asian Journal, 2019, 14, 149-154.	3.3	17
104	Cu(OTf)2-catalyzed three-component annulation reaction: one-pot synthesis of 4,5-dihydropyrazole from aldehydes, hydrazines and alkenes. RSC Advances, 2012, 2, 10167.	3.6	16
105	Novel C1-symmetric chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts. Tetrahedron, 2014, 70, 9545-9553.	1.9	16
106	Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives. Organic and Biomolecular Chemistry, 2020, 18, 3832-3837.	2.8	16
107	Copper(II)-Catalyzed Synthesis of Pyrimidines from Propargylic Alcohols and Amidine: A Propargylation-Cyclization-Oxidation Tandem Reaction. Synlett, 2011, 2011, 1179-1183.	1.8	15
108	Antioxidant properties and chemical constituents of ethanolic extract and its fractions of Ocimum gratissimum. Medicinal Chemistry Research, 2013, 22, 1124-1130.	2.4	15

#	Article	IF	CITATIONS
109	Cytisine-type alkaloids and flavonoids from the rhizomes of <i>Sophora tonkinensis</i> Journal of Asian Natural Products Research, 2016, 18, 429-435.	1.4	15
110	Divergent Total Syntheses of (â^')â€Huperzineâ€Q, (+)â€Lycopladineâ€B, (+)â€Lycopladineâ€C, and (â^')â€4â€ <i>epi</i>	3.3	15
111	Praseodymium(III)-Catalyzed Regioselective Synthesis of C ₃ -N-Substituted Coumarins with Coumarins and Azides. Journal of Organic Chemistry, 2017, 82, 9006-9011.	3.2	15
112	Assembly of 5â€Aminoimidazoles via Palladiumâ€Catalysed Double Isocyanide Insertion Reaction. Advanced Synthesis and Catalysis, 2021, 363, 2762-2766.	4.3	15
113	Study on the structural changes of bovine serum albumin with effects on polydatin binding by a multitechnique approach. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 81, 209-214.	3.9	14
114	Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini. Medicinal Chemistry Research, 2011, 20, 968-974.	2,4	14
115	Synthesis of Benzoxazoles by the Copper Triflate Catalysed Reaction of Nitriles and O-Aminophenols. Journal of Chemical Research, 2012, 36, 370-373.	1.3	14
116	Palladium-catalyzed formation of phenolic compounds by reaction of carbonyl compounds with carbon dioxide. Chemical Communications, 2012, 48, 12080.	4.1	14
117	Ligand-free indium(III)-catalyzed Heck reaction. Tetrahedron, 2013, 69, 7925-7930.	1.9	14
118	Cu(<scp>i</scp>)-catalyzed multicomponent cascade reactions of terminal alkynes, unactivated primary alkyl bromides, CO ₂ and NaN ₃ . RSC Advances, 2016, 6, 63855-63858.	3.6	14
119	Preparation of Rhodium(III) complexes with 2(1H)-quinolinone derivatives and evaluation of their inÂvitro and inÂvivo antitumor activity. European Journal of Medicinal Chemistry, 2018, 151, 226-236.	5 . 5	14
120	Microwave-assisted synthesis and evaluation of naphthalimides derivatives as free radical scavengers. Medicinal Chemistry Research, 2011, 20, 752-759.	2.4	13
121	A Novel Analytical Method for Trace Ammonium in Freshwater and Seawater Using 4-Methoxyphthalaldehyde as Fluorescent Reagent. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-7.	1.6	13
122	Electrochemical α-methoxymethylation and aminomethylation of propiophenones using methanol as a green C1 source. Organic Chemistry Frontiers, 2020, 7, 2399-2404.	4.5	13
123	Sodium maleopimaric acid as pseudostationary phase for chiral separations of amino acid derivatives by capillary micellar electrokinetic chromatography. Journal of Separation Science, 2007, 30, 2748-2753.	2.5	12
124	A robust heterogeneous Co-MOF catalyst in azide–alkyne cycloaddition and Friedel–Crafts reactions as well as hydrosilylation of alkynes. New Journal of Chemistry, 2021, 45, 872-880.	2.8	12
125	Paired Electrosynthesis of Aromatic Azo Compounds from Aryl Diazonium Salts with Pyrroles or Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2752-2756.	4.3	12
126	Syntheses, characterization and fluorescent properties of two series of dehydroabietic acid C-ring derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 76, 328-335.	3.9	11

#	Article	IF	CITATIONS
127	Synthesis of a Dehydroabietyl Derivative Bearing a 2-(2′-Hydroxyphenyl) Benzimidazole Unit and Its Selective Cu2+ Chemosensing. Molecules, 2011, 16, 100-106.	3.8	11
128	Flavonoid constituents of Euonymus fortunei. Chemistry of Natural Compounds, 2013, 49, 428-431.	0.8	11
129	Capture of CO ₂ in air for 4,5-disubstituted furan-2(5H)-ones. Organic Chemistry Frontiers, 2016, 3, 1304-1308.	4.5	11
130	Five $11\hat{l}_{\pm}$, $12\hat{l}_{\pm}$ -epoxy pentacyclic triterpenoid saponins with antithrombus activities from Glechoma longituba. Fìtoterapìâ, 2019, 138, 104345.	2.2	11
131	FeCl ₃ -Catalyzed Propargylation-Cycloisomerization Tandem Reaction: A Facile One-Pot Synthesis of Substituted Furans. Synlett, 2008, 2008, 3046-3052.	1.8	10
132	Synthesis and amines enantiomeric recognition ability of binaphthyl-appended 22-crown-6 ethers derived from rosin acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 73, 177-183.	1.6	10
133	Antioxidant activities and transition metal ion chelating studies of some hydroxyl Schiff base derivatives. Medicinal Chemistry Research, 2012, 21, 1341-1346.	2.4	10
134	The first palladium-catalyzed 1,4-addition of terminal alkenes to acrylate esters. Chemical Communications, 2013, 49, 5295.	4.1	10
135	Copper-Catalyzed Oxidative Coupling–Annulation: One-Pot Synthesis of Indolizines from 2-Alkylazaarenes with Alkenes. Synlett, 2015, 26, 2024-2028.	1.8	10
136	Chemical Components of the Leaves of Siraitia grosvenorii. Chemistry of Natural Compounds, 2016, 52, 891-892.	0.8	10
137	Synthesis and biological evaluation of terminal functionalized thiourea-containing dipeptides as antitumor agents. RSC Advances, 2017, 7, 8866-8878.	3.6	10
138	Catalyst- and solvent-free approach to 2-arylated quinolines via $[5+1]$ annulation of 2-methylquinolines with diynones. RSC Advances, 2018, 8, 4584-4587.	3.6	10
139	Isolation and Purification of Kaempferol-3,7-O-α-L-Dirhamnopyranoside fromSiraitia grosvenoriLeaves by High-Speed Counter-Current Chromatograph and Its Free Radical Scavenging Activity. Separation Science and Technology, 2011, 46, 1528-1533.	2.5	9
140	Coumarin-containing aminophosphonates bridged with chiral side chain: synthesis and influence of chirality on cytotoxicity and DNA binding. Medicinal Chemistry Research, 2014, 23, 3144-3156.	2.4	9
141	Sc(OTf) ₃ -mediated 1,3-dipolar cycloadditionâ€"ring cleavageâ€"rearrangement: a highly stereoselective access to Z-β-enaminonitriles. Organic and Biomolecular Chemistry, 2015, 13, 513-519.	2.8	9
142	Synthesis of fused tricyclic indolizines by intramolecular silver-mediated double cyclization of 2-(pyridin-2-yl)acetic acid propargyl esters. RSC Advances, 2017, 7, 24011-24014.	3.6	9
143	Synthesis of Derivatives of Artesunate & Synthesis of Derivatives o	0.7	9
144	1,3,8-Trihydroxy-6-methylanthraquinone monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o233-o235.	0.2	8

#	Article	IF	CITATIONS
145	One-Pot Stepwise Approach to β-Enaminoketoesters through "Masked―1,3-Aza-Dipoles. Organic Letters, 2014, 16, 4048-4051.	4.6	8
146	Photostable fluorescent probes for 3D imaging and monitoring the metabolism of lipid droplets. Dyes and Pigments, 2020, 180, 108502.	3.7	8
147	Palladium-catalyzed synthesis of 5-amino-1,2,4-oxadiazoles <i>via</i> isocyanide insertion. Organic and Biomolecular Chemistry, 2020, 18, 4936-4940.	2.8	8
148	Electrochemically Mediated Esterification of Aromatic Aldehydes with Aliphatic Alcohols via Anodic Oxidation. Chinese Journal of Organic Chemistry, 2021, 41, 4718.	1.3	8
149	Processing of Siraitia grosvenori' leaves: Extraction of antioxidant substances. Biomass and Bioenergy, 2012, 36, 419-426.	5.7	7
150	Constructing Mononuclear Palladium Catalysts by Precoordination/Solvothermal Polymerization: Recyclable Catalyst for Regioselective Oxidative Heck Reactions. Angewandte Chemie, 2019, 131, 2470-2475.	2.0	7
151	Transition metal-free catalytic formylation of carbon dioxide and amide with novel poly(ionic) Tj ETQq $1\ 1\ 0.7843$	14 rgBT /	Overlock 10 T
152	Isolation and Determination of Iridoid Glycosides from the Seeds of <i>Osmanthus fragrans </i> by HPLC. Analytical Letters, 2013, 46, 745-752.	1.8	6
153	Simultaneous reduction of aldehyde group to hydroxymethyl group in palladium-catalyzed Suzuki cross-coupling reaction. Chemical Research in Chinese Universities, 2014, 30, 614-618.	2.6	6
154	TfOH-Catalyzed Reaction of Bispropargyl Alcohols with 1,3-Dicarbonyl Compounds. Synthesis, 2016, 48, 455-461.	2.3	6
155	Terminal functionalized thiourea-containing dipeptides as multidrug-resistance reversers that target 20S proteasome and cell proliferation. European Journal of Medicinal Chemistry, 2017, 126, 259-269.	5. 5	6
156	4-Methylumbelliferones Analogues as Anticancer Agents: Synthesis and in Cell Pharmacological Studies. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 576-589.	1.7	6
157	Palladium $\hat{a} \in \mathbb{C}$ atalyzed Tandem Cyclization of $2\hat{a} \in (2 \text{ Ethynylphenyl})$ acetonitriles and Isocyanides: Access to Indeno $[2,1\hat{a} \in (1) \text{ b} \times (1)]$ pyrroles. Advanced Synthesis and Catalysis, 2022, 364, 1117-1121.	4.3	6
158	One-pot synthesis of oxoaporphines as potent antitumor agents and investigation of their mechanisms of actions. European Journal of Medicinal Chemistry, 2022, 231, 114141.	5 . 5	6
159	Protonation-controlled axial chirality in maleopimaric imides. New Journal of Chemistry, 2014, 38, 693-699.	2.8	5
160	Unexpected solvent effect on the binding of positively-charged macrocycles to neutral aromatic hydrocarbons. Chemical Communications, 2019, 55, 10924-10927.	4.1	5
161	Synthesis of imidazo[1,2- <i>c</i>]thiazoles through Pd-catalyzed bicyclization of <i>tert</i> -butyl isonitrile with thioamides. Organic and Biomolecular Chemistry, 2019, 17, 8403-8407.	2.8	5
162	Integrating Terminal CoBr _n Salts into a 2D Cobalt(II) Coordination Polymer to Promote the ⟨i⟩β⟨/i⟩â€(⟨i⟩E)â^²⟨/i>Selective Hydroboration of Alkynes. Advanced Synthesis and Catalysis, 2022, 364, 1873-1878.	4.3	5

#	Article	IF	Citations
163	In situ synthesis of rosin derived chiral derivatizing agents for 31P NMR assays of amine and alcohol enantiomers. Chemical Research in Chinese Universities, 2013, 29, 894-899.	2.6	4
164	Synthesis and antitumor properties of novel alizarin analogs. Medicinal Chemistry Research, 2014, 23, 5031-5042.	2.4	4
165	Application of Dehydroabietic Acid in Palladiumâ€Catalysed Enyne Cycloisomerisation. Advanced Synthesis and Catalysis, 2017, 359, 2442-2447.	4.3	4
166	Electrochemically Mediated Sâ€"N Bond Formation: Synthesis of Sulfenamides. Chinese Journal of Organic Chemistry, 2021, 41, 2354.	1.3	4
167	Maleopimaric acid trimethyl ester. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5701-o5703.	0.2	3
168	Use of Litchi (Litchi sinensis Sonn.) Seeds in Health. , 2011, , 699-703.		3
169	Synthesis of Multisubstituted Guanidines through Palladium-Catalyzed Insertion of Isonitriles. Synlett, 2018, 29, 2326-2330.	1.8	3
170	Antitumor activity on human bladder cancer T-24 cells and composition analysis of the core of <i>Camellia osmantha</i> fruit. Natural Product Research, 2020, 34, 2689-2693.	1.8	3
171	Methyl 12-bromo-13,14-dinitrodeisopropyldehydroabietate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o3003-o3005.	0.2	2
172	Methyl 12-benzoyldehydroabietate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o1895-o1897.	0.2	2
173	Water-Solvent Method for the Synthesis of N-Substituted and N-,4-Disubstituted 1,8-Naphthalimides under Microwave Irradiation. Synthetic Communications, 2012, 42, 3042-3052.	2.1	2
174	Synthesis and metal ion binding activity of methyl 12-amino-13-nitro-7-oxo dehydrodeisopropylabietate derivatives. Medicinal Chemistry Research, 2012, 21, 2494-2500.	2.4	2
175	Light-driven selective aerobic oxidation of (iso)quinoliniums and related heterocycles. RSC Advances, 2021, 11, 16246-16251.	3.6	2
176	Synthesis and biological evaluation of novel 1,3-diphenylurea quinoxaline derivatives as potent anticancer agents. Medicinal Chemistry Research, 2021, 30, 1496-1511.	2.4	2
177	Theoretical studies on the structures and stabilities of various possible isomers of C 70 O 3. Computational and Theoretical Chemistry, 2000, 531, 349-358.	1.5	1
178	Methylcis-deisopropyldehydroabietate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o3166-o3167.	0.2	1
179	Methyl 12-chlorodehydroabietate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, o5425-o5426.	0.2	1
180	Fragrant Olive (Osmanthus fragrans) Seeds in Health. , 2011, , 499-504.		1

#	Article	IF	CITATIONS
181	Antioxidant Activity of Longan (Dimocarpus Longan L.) Seed Extract. , 2011, , 705-710.		1
182	Synthesis, Cytotoxicity, DNA Binding, and Apoptosis of Alizarin 2-O-Side-Chain Derivatives. Chemistry of Natural Compounds, 2014, 50, 242-246.	0.8	1
183	Synthesis of Rosin Derived Chiral derivatizing agents for < sup > 31 < /sup > P NMR assays of amine or alcohol and amino alcohol enantiomers. Chinese Journal of Organic Chemistry, 2012, 32, 900.	1.3	1
184	Electrocatalytic Synthesis of gem-Bisarylthio Enamines and \hat{l}_{\pm} -Phenylthio Ketones via a Radical Process under Mild Conditions. Synlett, 2021, 32, 593-600.	1.8	1
185	Methyl 7-oxo-12-propylamino-13-nitrodeisopropyldehydroabietate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2604-o2604.	0.2	0
186	Total Phenolic, Total Flavonoid and Antioxidant Activity of Euonymus fortunei by HPLC-Based Analysis. Asian Journal of Chemistry, 2014, 26, 4648-4650.	0.3	0
187	Study on the Regioselectivie of Grignard Reagent Addition Reaction of Maleopimaric Acid Trimethyl Ester. Chinese Journal of Organic Chemistry, 2013, 33, 138.	1.3	0