
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4131641/publications.pdf Version: 2024-02-01

Δειμιτου Ναριτά

#	Article	IF	CITATIONS
1	New advances in nanographene chemistry. Chemical Society Reviews, 2015, 44, 6616-6643.	18.7	1,212
2	Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nature Chemistry, 2014, 6, 126-132.	6.6	468
3	Engineering of robust topological quantum phases in graphene nanoribbons. Nature, 2018, 560, 209-213.	13.7	397
4	Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions. Nature, 2018, 561, 507-511.	13.7	365
5	Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nature Communications, 2017, 8, 633.	5.8	312
6	On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. ACS Nano, 2017, 11, 1380-1388.	7.3	270
7	Heteroatom-Doped Nanographenes with Structural Precision. Accounts of Chemical Research, 2019, 52, 2491-2505.	7.6	239
8	Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature, 2018, 557, 691-695.	13.7	232
9	Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2018, 2, .	13.8	228
10	Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nature Communications, 2013, 4, 2646.	5.8	187
11	Structurally Defined Graphene Nanoribbons with High Lateral Extension. Journal of the American Chemical Society, 2012, 134, 18169-18172.	6.6	185
12	Free-Standing Monolayer Two-Dimensional Supramolecular Organic Framework with Good Internal Order. Journal of the American Chemical Society, 2015, 137, 14525-14532.	6.6	181
13	Benzoâ€Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties. Angewandte Chemie - International Edition, 2017, 56, 3374-3378.	7.2	177
14	Graphene Nanoribbons: On‣urface Synthesis and Integration into Electronic Devices. Advanced Materials, 2020, 32, e2001893.	11.1	156
15	Bottomâ€Up Synthesis of Chemically Precise Graphene Nanoribbons. Chemical Record, 2015, 15, 295-309.	2.9	151
16	Bottom-Up Synthesis of Liquid-Phase-Processable Graphene Nanoribbons with Near-Infrared Absorption. ACS Nano, 2014, 8, 11622-11630.	7.3	138
17	On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization. ACS Nano, 2018, 12, 74-81.	7.3	135
18	Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration. Journal of the American Chemical Society, 2016, 138, 15488-15496.	6.6	129

#	Article	IF	CITATIONS
19	Synthesis of Stable Nanographenes with OBO-Doped Zigzag Edges Based on Tandem Demethylation-Electrophilic Borylation. Journal of the American Chemical Society, 2016, 138, 9021-9024.	6.6	123
20	Amplification of Dissymmetry Factors in π-Extended [7]- and [9]Helicenes. Journal of the American Chemical Society, 2021, 143, 4661-4667.	6.6	119
21	Ultrafast Photoconductivity of Graphene Nanoribbons and Carbon Nanotubes. Nano Letters, 2013, 13, 5925-5930.	4.5	117
22	Quantum units from the topological engineering of molecular graphenoids. Science, 2019, 366, 1107-1110.	6.0	116
23	Ï€-Extended Pyrene-Fused Double [7]Carbohelicene as a Chiral Polycyclic Aromatic Hydrocarbon. Journal of the American Chemical Society, 2019, 141, 12797-12803.	6.6	113
24	Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. Journal of the American Chemical Society, 2016, 138, 12783-12786.	6.6	112
25	Bottom-Up Synthesis of Heteroatom-Doped Chiral Graphene Nanoribbons. Journal of the American Chemical Society, 2018, 140, 9104-9107.	6.6	110
26	B ₂ N ₂ -Dibenzo[<i>a</i> , <i>e</i>]pentalenes: Effect of the BN Orientation Pattern on Antiaromaticity and Optoelectronic Properties. Journal of the American Chemical Society, 2015, 137, 7668-7671.	6.6	109
27	Solution and on-surface synthesis of structurally defined graphene nanoribbons as a new family of semiconductors. Chemical Science, 2019, 10, 964-975.	3.7	104
28	Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nature Chemistry, 2021, 13, 581-586.	6.6	104
29	Deposition, Characterization, and Thin-Film-Based Chemical Sensing of Ultra-long Chemically Synthesized Graphene Nanoribbons. Journal of the American Chemical Society, 2014, 136, 7555-7558.	6.6	103
30	Unexpected Scholl Reaction of 6,7,13,14-Tetraarylbenzo[<i>k</i>]tetraphene: Selective Formation of Five-Membered Rings in Polycyclic Aromatic Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 2602-2608.	6.6	103
31	Graphene Nanoribbons as Low Band Gap Donor Materials for Organic Photovoltaics: Quantum Chemical Aided Design. ACS Nano, 2012, 6, 5539-5548.	7.3	99
32	Photoswitchable Micro-Supercapacitor Based on a Diarylethene-Graphene Composite Film. Journal of the American Chemical Society, 2017, 139, 9443-9446.	6.6	96
33	Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy. Nano Letters, 2017, 17, 2197-2203.	4.5	92
34	A C216-Nanographene Molecule with Defined Cavity as Extended Coronoid. Journal of the American Chemical Society, 2016, 138, 4322-4325.	6.6	90
35	Persulfurated Coronene: A New Generation of "Sulflower― Journal of the American Chemical Society, 2017, 139, 2168-2171.	6.6	89
36	Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap <i>N</i> = 9 Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 3635-3638.	6.6	88

#	Article	IF	CITATIONS
37	Exploration of pyrazine-embedded antiaromatic polycyclic hydrocarbons generated by solution and on-surface azomethine ylide homocoupling. Nature Communications, 2017, 8, 1948.	5.8	88
38	Benzanelliertes Doppelâ€{7]Carbohelicen: Synthese, Struktur und physikochemische Eigenschaften. Angewandte Chemie, 2017, 129, 3423-3427.	1.6	86
39	Single photon emission from graphene quantum dots at room temperature. Nature Communications, 2018, 9, 3470.	5.8	86
40	Graphene nanoribbon blends with P3HT for organic electronics. Nanoscale, 2014, 6, 6301-6314.	2.8	85
41	Exciton–exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Nature Communications, 2016, 7, 11010.	5.8	85
42	Raman Fingerprints of Atomically Precise Graphene Nanoribbons. Nano Letters, 2016, 16, 3442-3447.	4.5	83
43	Negatively Curved Nanographene with Heptagonal and [5]Helicene Units. Journal of the American Chemical Society, 2020, 142, 14814-14819.	6.6	81
44	Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and <i>ex Situ</i> Characterization. ACS Applied Nano Materials, 2019, 2, 2184-2192.	2.4	75
45	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie - International Edition, 2017, 56, 6753-6757.	7.2	72
46	On-Surface Synthesis of Antiaromatic and Open-Shell Indeno[2,1- <i>b</i>]fluorene Polymers and Their Lateral Fusion into Porous Ribbons. Journal of the American Chemical Society, 2019, 141, 12346-12354.	6.6	71
47	Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 2019, 146, 36-43.	5.4	70
48	Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nature Communications, 2017, 8, 14767.	5.8	68
49	Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion. Journal of the American Chemical Society, 2018, 140, 7803-7809.	6.6	68
50	Lateral Fusion of Chemical Vapor Deposited <i>N</i> = 5 Armchair Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 9483-9486.	6.6	65
51	Role of Edge Engineering in Photoconductivity of Graphene Nanoribbons. Journal of the American Chemical Society, 2017, 139, 7982-7988.	6.6	64
52	Coupled Spin States in Armchair Graphene Nanoribbons with Asymmetric Zigzag Edge Extensions. Nano Letters, 2020, 20, 6429-6436.	4.5	64
53	Syntheses and Characterizations of Functional Polycyclic Aromatic Hydrocarbons and Graphene Nanoribbons. Bulletin of the Chemical Society of Japan, 2020, 93, 490-506.	2.0	62
54	Heteroatom-Doped Perihexacene from a Double Helicene Precursor: On-Surface Synthesis and Properties. Journal of the American Chemical Society, 2017, 139, 4671-4674.	6.6	61

#	Article	IF	CITATIONS
55	On-Surface Synthesis of a Nonplanar Porous Nanographene. Journal of the American Chemical Society, 2019, 141, 7726-7730.	6.6	61
56	On-Surface Synthesis of Indenofluorene Polymers by Oxidative Five-Membered Ring Formation. Journal of the American Chemical Society, 2018, 140, 3532-3536.	6.6	60
57	High Power Inâ€Plane Microâ€Supercapacitors Based on Mesoporous Polyaniline Patterned Graphene. Small, 2017, 13, 1603388.	5.2	58
58	Small Size, Big Impact: Recent Progress in Bottomâ€Up Synthesized Nanographenes for Optoelectronic and Energy Applications. Advanced Science, 2022, 9, e2106055.	5.6	54
59	On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon–Heptagon Pairs. Journal of the American Chemical Society, 2020, 142, 10291-10296.	6.6	53
60	Adding Four Extra K-Regions to Hexa- <i>peri</i> -hexabenzocoronene. Journal of the American Chemical Society, 2016, 138, 4726-4729.	6.6	52
61	Anchor Groups for Grapheneâ€Porphyrin Singleâ€Molecule Transistors. Advanced Functional Materials, 2018, 28, 1803629.	7.8	52
62	Synthesis of Nonplanar Graphene Nanoribbon with Fjord Edges. Journal of the American Chemical Society, 2021, 143, 5654-5658.	6.6	52
63	Bottom-Up, On-Surface-Synthesized Armchair Graphene Nanoribbons for Ultra-High-Power Micro-Supercapacitors. Journal of the American Chemical Society, 2020, 142, 17881-17886.	6.6	51
64	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie - International Edition, 2018, 57, 11233-11237.	7.2	50
65	Benzo-Fused Periacenes or Double Helicenes? Different Cyclodehydrogenation Pathways on Surface and in Solution. Journal of the American Chemical Society, 2019, 141, 7399-7406.	6.6	49
66	Diels–Alder polymerization: a versatile synthetic method toward functional polyphenylenes, ladder polymers and graphene nanoribbons. Polymer Journal, 2018, 50, 3-20.	1.3	47
67	Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors. ACS Nano, 2020, 14, 5754-5762.	7.3	46
68	High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes. Journal of Physical Chemistry C, 2017, 121, 10620-10625.	1.5	45
69	Bottomâ€Up Synthesis of Necklaceâ€Like Graphene Nanoribbons. Chemistry - an Asian Journal, 2015, 10, 2134-2138.	1.7	43
70	Exhaled Breath Markers for Nonimaging and Noninvasive Measures for Detection of Multiple Sclerosis. ACS Chemical Neuroscience, 2017, 8, 2402-2413.	1.7	43
71	Edge Functionalization of Structurally Defined Graphene Nanoribbons for Modulating the Self-Assembled Structures. Journal of the American Chemical Society, 2017, 139, 16454-16457.	6.6	43
72	Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 7489-7496.	6.6	43

#	Article	IF	CITATIONS
73	Charge transport mechanism in networks of armchair graphene nanoribbons. Scientific Reports, 2020, 10, 1988.	1.6	41
74	Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, and Single-Molecule Spectroscopy. Journal of the American Chemical Society, 2019, 141, 16439-16449.	6.6	39
75	Large-Cavity Coronoids with Different Inner and Outer Edge Structures. Journal of the American Chemical Society, 2020, 142, 12046-12050.	6.6	38
76	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	38
77	A Highly Luminescent Nitrogen-Doped Nanographene as an Acid- and Metal-Sensitive Fluorophore for Optical Imaging. Journal of the American Chemical Society, 2021, 143, 10403-10412.	6.6	37
78	A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons. ACS Nano, 2019, 13, 13083-13091.	7.3	36
79	Nanographenes: Ultrastable, Switchable, and Bright Probes for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2020, 59, 496-502.	7.2	35
80	Protonâ€Gated Ringâ€Closure of a Negative Photochromic Azuleneâ€Based Diarylethene. Angewandte Chemie - International Edition, 2020, 59, 18532-18536.	7.2	35
81	Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale, 2015, 7, 12807-12811.	2.8	34
82	Pump–Push–Probe for Ultrafast Allâ€Optical Switching: The Case of a Nanographene Molecule. Advanced Functional Materials, 2019, 29, 1805249.	7.8	34
83	Electrical Characteristics of Fieldâ€Effect Transistors based on Chemically Synthesized Graphene Nanoribbons. Advanced Electronic Materials, 2015, 1, 1400010.	2.6	32
84	Fluorescence from graphene nanoribbons of well-defined structure. Carbon, 2017, 119, 235-240.	5.4	30
85	Strong Exciton–Photon Coupling in a Nanographene Filled Microcavity. Nano Letters, 2017, 17, 5521-5525.	4.5	30
86	Evolution of the Topological Energy Band in Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2021, 12, 8679-8684.	2.1	30
87	A Shape-Persistent Polyphenylene Spoked Wheel. Journal of the American Chemical Society, 2016, 138, 15539-15542.	6.6	29
88	Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer. Journal of Physical Chemistry C, 2019, 123, 24031-24038.	1.5	29
89	On-Surface Synthesis of Oligo(indenoindene). Journal of the American Chemical Society, 2020, 142, 12925-12929.	6.6	29
90	Synthesis and assembly of extended quintulene. Nature Communications, 2020, 11, 3976.	5.8	28

#	Article	IF	CITATIONS
91	On-Surface Synthesis of Dibenzohexacenohexacene and Dibenzopentaphenoheptaphene. Bulletin of the Chemical Society of Japan, 2021, 94, 997-999.	2.0	27
92	Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2019, 256, 1900343.	0.7	26
93	Synthesis of Circumpyrene by Alkyne Benzannulation of Brominated Dibenzo[<i>hi</i> , <i>st</i>]ovalene. Journal of the American Chemical Society, 2019, 141, 19994-19999.	6.6	26
94	Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts. Physical Chemistry Chemical Physics, 2015, 17, 21988-21996.	1.3	25
95	Furan-containing double tetraoxa[7]helicene and its radical cation. Chemical Communications, 2020, 56, 15181-15184.	2.2	24
96	Electrospray deposition of structurally complex molecules revealed by atomic force microscopy. Nanoscale, 2018, 10, 1337-1344.	2.8	23
97	Modulation of the Nonlinear Optical Properties of Dibenzo[<i>hi</i> , <i>st</i>]ovalene by Peripheral Substituents. Journal of Physical Chemistry C, 2018, 122, 25007-25013.	1.5	23
98	Regioselective Bromination and Functionalization of Dibenzo[<i>hi</i> , <i>st</i>]ovalene as Highly Luminescent Nanographene with Zigzag Edges. Chemistry - an Asian Journal, 2019, 14, 1703-1707.	1.7	23
99	On-surface synthesis of polyazulene with 2,6-connectivity. Chemical Communications, 2019, 55, 13466-13469.	2.2	23
100	Polycyclic aromatic chains on metals and insulating layers by repetitive [3+2]Âcycloadditions. Nature Communications, 2020, 11, 1490.	5.8	23
101	Coveâ€Edged Hexaâ€ <i>peri</i> â€hexabenzoâ€bisâ€ <i>peri</i> â€octacene: Molecular Conformations and Ampl Spontaneous Emission. Angewandte Chemie - International Edition, 2022, 61, .	ified 7.2	22
102	Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons. Nano Letters, 2020, 20, 1124-1130.	4.5	21
103	Fabrication of three terminal devices by ElectroSpray deposition of graphene nanoribbons. Carbon, 2016, 104, 112-118.	5.4	20
104	Spiro-fused bis-hexa-peri-hexabenzocoronene. Chemical Communications, 2018, 54, 13575-13578.	2.2	20
105	Photomodulation of Charge Transport in Allâ€5emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect. Advanced Materials, 2020, 32, e2001268.	11.1	20
106	Giant thermal expansion of a two-dimensional supramolecular network triggered by alkyl chain motion. Communications Materials, 2020, 1, 8.	2.9	20
107	Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 2021, 175, 50-59.	5.4	20
108	Hexaâ€ <i>peri</i> â€hexabenzocoronene with Different Acceptor Units for Tuning Optoelectronic Properties. Chemistry - an Asian Journal, 2016, 11, 2710-2714.	1.7	19

AKIMITSU NARITA

#	Article	IF	CITATIONS
109	Probing optical excitations in chevron-like armchair graphene nanoribbons. Nanoscale, 2017, 9, 18326-18333.	2.8	19
110	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	6.6	19
111	Synthesis of Dibenzo[<i>hi,st</i>]ovalene and Its Amplified Spontaneous Emission in a Polystyrene Matrix. Angewandte Chemie, 2017, 129, 6857-6861.	1.6	18
112	Synthesis of Triply Fused Porphyrinâ€Nanographene Conjugates. Angewandte Chemie, 2018, 130, 11403-11407.	1.6	18
113	Photomodulation of Two-Dimensional Self-Assembly of Azobenzene–Hexa- <i>peri</i> -hexabenzocoronene–Azobenzene Triads. Chemistry of Materials, 2019, 31, 6979-6985.	3.2	18
114	Dicyclopentaannelated Hexaâ€ <i>peri</i> â€hexabenzocoronenes with a Singlet Biradical Ground State. Angewandte Chemie - International Edition, 2021, 60, 11300-11304.	7.2	18
115	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics. Advanced Optical Materials, 2021, 9, 2100508.	3.6	18
116	Edge chlorination of hexa-peri-hexabenzocoronene investigated by density functional theory and vibrational spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 11869-11878.	1.3	17
117	Onâ€surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure. Chemistry - an Asian Journal, 2020, 15, 3807-3811.	1.7	17
118	Growth Optimization and Device Integration of Narrowâ€Bandgap Graphene Nanoribbons. Small, 2022, 18, .	5.2	17
119	Kinetic Ionic Permeation and Interfacial Doping of Supported Graphene. Nano Letters, 2019, 19, 9029-9036.	4.5	16
120	S-Shaped Double Helicene Diimides: Synthesis, Self-Assembly, and Mechanofluorochromism. Organic Letters, 2021, 23, 6183-6188.	2.4	16
121	Vapor-Phase Transport Deposition, Characterization, and Applications of Large Nanographenes. Journal of the American Chemical Society, 2015, 137, 4453-4459.	6.6	15
122	On-Surface Dehydro-Diels–Alder Reaction of Dibromo-bis(phenylethynyl)benzene. Journal of the American Chemical Society, 2020, 142, 1721-1725.	6.6	15
123	Waterâ€Soluble Nanoparticles with Twisted Double [7]Carbohelicene for Lysosomeâ€Targeted Cancer Photodynamic Therapy. Small, 2022, 18, e2105365.	5.2	15
124	Synthesis, Photophysical Characterization, and Selfâ€Assembly of Hexaâ€ <i>peri</i> â€hexabenzocoronene/Benzothiadiazole Donor–Acceptor Structure. ChemPlusChem, 2017, 82, 1030-1033.	1.3	14
125	Optical Investigation of On‣urface Synthesized Armchair Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2017, 254, 1700223.	0.7	14
126	Overcoming Steric Hindrance in Arylâ€Aryl Homocoupling via Onâ€Surface Copolymerization. ChemPhysChem, 2019, 20, 2360-2366.	1.0	14

#	Article	IF	CITATIONS
127	On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Research, 2021, 14, 4754-4759.	5.8	14
128	Bipolar resistive switching properties of Ti-CuO/(hexafluoro-hexa- <i>peri</i> -hexabenzocoronene)-Cu hybrid interface device: Influence of electronic nature of organic layer. Journal of Applied Physics, 2013, 113, .	1.1	13
129	Untying the Bundles of Solutionâ€5ynthesized Graphene Nanoribbons for Highly Capacitive Microâ€5upercapacitors. Advanced Functional Materials, 2022, 32, 2109543.	7.8	13
130	Excited states engineering enables efficient near-infrared lasing in nanographenes. Materials Horizons, 2022, 9, 393-402.	6.4	12
131	On-surface Synthesis of Graphene Nanoribbons through Solution-processing of Monomers. Chemistry Letters, 2017, 46, 1476-1478.	0.7	11
132	Color Sensitive Response of Graphene/Graphene Quantum Dot Phototransistors. Journal of Physical Chemistry C, 2019, 123, 26490-26497.	1.5	10
133	Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration. Chemical Science, 2020, 11, 12816-12821.	3.7	10
134	X-shaped thiadiazole-containing double [7]heterohelicene with strong chiroptical response and ï€-stacked homochiral assembly. Chemical Communications, 2021, 57, 5566-5569.	2.2	10
135	A TPD-based determination of the graphite interlayer cohesion energy. Journal of Chemical Physics, 2018, 149, 194701.	1.2	9
136	A Phenyleneâ€Bridged Cyclohexaâ€ <i>meta</i> â€phenylene as Hexaâ€ <i>peri</i> â€hexabenzocoronene Precurso Chemistry - A European Journal, 2018, 24, 11908-11910.	^{or} . 1.7	9
137	Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer. Journal of Physical Chemistry Letters, 2019, 10, 1431-1436.	2.1	9
138	Regioselective Hydrogenation of a 60-Carbon Nanographene Molecule toward a Circumbiphenyl Core. Journal of the American Chemical Society, 2019, 141, 4230-4234.	6.6	9
139	Hysteresis in graphene nanoribbon field-effect devices. Physical Chemistry Chemical Physics, 2020, 22, 5667-5672.	1.3	9
140	Spiers Memorial Lecture : Carbon nanostructures by macromolecular design – from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions, 2021, 227, 8-45.	1.6	9
141	Covalently Interlocked Cyclohexaâ€≺i>mâ€phenylenes and Their Assembly: En Route to Supramolecular 3D Carbon Nanostructures. Angewandte Chemie - International Edition, 2017, 56, 10602-10606.	7.2	8
142	Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach. Physical Review B, 2019, 100, .	1.1	8
143	Synthesis and helical supramolecular organization of discotic liquid crystalline dibenzo[<i>hi</i> , <i>st</i>]ovalene. Journal of Materials Chemistry C, 2019, 7, 12898-12906.	2.7	8
144	Dicyclopentaannelated Hexaâ€ <i>peri</i> â€hexabenzocoronenes with a Singlet Biradical Ground State. Angewandte Chemie, 2021, 133, 11400-11404.	1.6	8

#	Article	IF	CITATIONS
145	Raman spectroscopy of holey nanographene C216 . Journal of Raman Spectroscopy, 2021, 52, 2301-2316.	1.2	8
146	Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Organic Letters, 2022, 24, 2414-2419.	2.4	8
147	Coveâ€Edged Hexaâ€ <i>peri</i> â€hexabenzoâ€bisâ€ <i>peri</i> â€octacene: Molecular Conformations and Ampli Spontaneous Emission. Angewandte Chemie, 2022, 134, .	fied 1.6	8
148	Monitoring the On-Surface Synthesis of Graphene Nanoribbons by Mass Spectrometry. Analytical Chemistry, 2017, 89, 7485-7492.	3.2	7
149	Direct Metalâ€Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Microâ€Supercapacitors with High Volumetric Capacitance. Batteries and Supercaps, 2019, 2, 929-933.	2.4	7
150	Rigidification of Poly(<i>p</i> -phenylene)s through <i>ortho</i> -Phenyl Substitution. Macromolecules, 2020, 53, 5756-5762.	2.2	7
151	Oligophenyls with Multiple Disulfide Bridges as Higher Homologues of Dibenzo[<i>c</i> , <i>e</i>][1,2]dithiin: Synthesis and Application in Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2020, 26, 8007-8011.	1.7	7
152	Vibronic effect and influence of aggregation on the photophysics of graphene quantum dots. Nanoscale, 2022, 14, 3826-3833.	2.8	7
153	Large polycyclic aromatic hydrocarbons for application in donor–acceptor photovoltaics. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 785-789.	0.8	6
154	Dimensional Confinement in Carbonâ€based Structures – From 3D to 1D. Annalen Der Physik, 2017, 529, 1700051.	0.9	6
155	Graphene nanoribbons on hexagonal boron nitride: Deposition and transport characterization. Applied Physics Letters, 2019, 114, 173101.	1.5	6
156	Stepwise Lateral Extension of Phenyl‣ubstituted Linear Polyphenylenes. Macromolecular Chemistry and Physics, 2020, 221, 1900374.	1.1	6
157	Size-dependent electron transfer from atomically defined nanographenes to metal oxide nanoparticles. Nanoscale, 2020, 12, 16046-16052.	2.8	6
158	Graphene Nanoribbon Field-Effect Transistors with Top-Gate Polymer Dielectrics. ACS Applied Electronic Materials, 2022, 4, 2667-2671.	2.0	6
159	Photocrosslinking of Fullerene Vesicles that Prevents Phase Transition and Decreases Water Permeation. Chemistry Letters, 2013, 42, 1176-1178.	0.7	5
160	Photocrosslinking of the Exterior of a Fullerene Bilayer that Prevents Vesicle Aggregation. Chemistry Letters, 2014, 43, 877-879.	0.7	5
161	Tuning interfacial charge transfer in atomically precise nanographene–graphene heterostructures by engineering van der Waals interactions. Journal of Chemical Physics, 2022, 156, 074702.	1.2	5
162	Band structure modulation by methoxy-functionalization of graphene nanoribbons. Journal of Materials Chemistry C, 2022, 10, 4173-4181.	2.7	5

#	Article	IF	CITATIONS
163	Synthesis and Characterizations of 5,5′â€Bibenzo[<i>rst</i>]pentaphene with Axial Chirality and Symmetryâ€Breaking Charge Transfer. Advanced Science, 2022, , 2200004.	5.6	5
164	Double Thia/sulfone[7]helicenes with Controlled Photophysical and Chiroptical Properties by Heteroatom Variation. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
165	Nanographene: ultrastabile, schaltbare und helle Sonden für die hochauflösende Mikroskopie. Angewandte Chemie, 2020, 132, 504-510.	1.6	4
166	Oligomerization of Dehydrogenated Polycyclic Aromatic Hydrocarbons on Highly Oriented Pyrolytic Graphite. Journal of Physical Chemistry C, 2020, 124, 8236-8246.	1.5	4
167	2D self-assembly and electronic characterization of oxygen–boron–oxygen-doped chiral graphene nanoribbons. Chemical Communications, 2021, 57, 6031-6034.	2.2	4
168	Self-assembly and photoinduced fabrication of conductive nanographene wires on boron nitride. Nature Communications, 2022, 13, 442.	5.8	4
169	Vibronic fingerprints in the luminescence of graphene quantum dots at cryogenic temperature. Journal of Chemical Physics, 2022, 156, 104302.	1.2	4
170	Synthesis of Giant Dendritic Polyphenylenes with 366 and 546 Carbon Atoms and Their Highâ€vacuum Electrospray Deposition. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
171	Vibrational signature of the graphene nanoribbon edge structure from high-resolution electron energy-loss spectroscopy. Nanoscale, 2020, 12, 19681-19688.	2.8	3
172	Protonenvermittelter Ringschluss eines negativ photochromen, Azulenâ€basierten Diarylethens. Angewandte Chemie, 2020, 132, 18690-18695.	1.6	3
173	Exploring Intramolecular Methyl–Methyl Coupling on a Metal Surface for Edge-Extended Graphene Nanoribbons. Organic Materials, 2021, 03, 128-133.	1.0	3
174	Shapeâ€Persistent Graphite Replica of Metal Wires. Advanced Materials, 2017, 29, 1603732.	11.1	2
175	From Hexaphenylbenzene to 1,2,3,4,5,6-Hexacyclohexylcyclohexane. Journal of the American Chemical Society, 2020, 142, 12916-12920.	6.6	2
176	Synthesis and Characterization of Dibenzo[<i>hi,st</i>]ovalene as a Highly Fluorescent Polycyclic Aromatic Hydrocarbon and Its π-Extension to Circumpyrene. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 1094-1104.	0.0	2
177	A Nanographeneâ€Based Twoâ€Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angewandte Chemie, 2022, 134, .	1.6	2
178	Kovalent gebundene, ineinander verkettete Cyclohexaâ€ <i>m</i> â€phenylene und ihre Selbstorganisation: Auf dem Weg zu supramolekularen 3Dâ€Kohlenstoffnanostrukturen. Angewandte Chemie, 2017, 129, 10738-10742.	1.6	1
179	Charge Transport: Photomodulation of Charge Transport in Allâ€5emiconducting 2D–1D van der Waals Heterostructures with Suppressed Persistent Photoconductivity Effect (Adv. Mater. 26/2020). Advanced Materials, 2020, 32, 2070200.	11.1	1
180	Comparative Study of Direct and Graphite-Mediated Oxidation of Large PAHs. Journal of Physical Chemistry C, 2021, 125, 8163-8176.	1.5	1

#	Article	IF	CITATIONS
181	Ultrafast carrier dynamics in graphene and graphene nanostructures. Terahertz Science & Technology, 2020, 13, 135-148.	0.5	1
182	Terahertz photoconductivity of graphene nanostructures. , 2013, , .		0
183	Terahertz Carrier Dynamics in Graphene and Graphene Nanostructures. , 2014, , .		0
184	Graphene Nanoribbons. , 2014, , 1-7.		0
185	Room-temperature THz High Harmonics Generation in Graphene. , 2018, , .		0
186	Direct Metalâ€Free Chemical Vapor Deposition of Graphene Films on Insulating Substrates for Microâ€Supercapacitors with High Volumetric Capacitance. Batteries and Supercaps, 2019, 2, 896-896.	2.4	0
187	Graphene Nanoribbons. , 2015, , 877-882.		0
188	Terahertz Carrier Dynamics in Graphene Nanoribbons with Different Peripherial Functional Groups. , 2016, , .		0
189	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics (Advanced Optical Materials 23/2021). Advanced Optical Materials, 2021, 9, 2170095.	3.6	0
190	(Invited) Synthesis and Characterizations of Highly Fluorescent Nanographene Molecules. ECS Meeting Abstracts, 2022, MA2022-01, 831-831.	0.0	0