List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Perovskiteâ€Quantumâ€Dot Lightâ€Emitting Diodes by Surface Engineering. Advanced Materials, 2016, 28, 8718-8725.	21.0	917
2	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	39.5	894
3	Bidentate Ligand-Passivated CsPbI ₃ Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society, 2018, 140, 562-565.	13.7	745
4	Plasmonic Gold Nanocrystals Coupled with Photonic Crystal Seamlessly on TiO ₂ Nanotube Photoelectrodes for Efficient Visible Light Photoelectrochemical Water Splitting. Nano Letters, 2013, 13, 14-20.	9.1	692
5	Selenideâ€Based Electrocatalysts and Scaffolds for Water Oxidation Applications. Advanced Materials, 2016, 28, 77-85.	21.0	544
6	Amorphous NiFe-OH/NiFeP Electrocatalyst Fabricated at Low Temperature for Water Oxidation Applications. ACS Energy Letters, 2017, 2, 1035-1042.	17.4	505
7	Engineering Interfacial Charge Transfer in CsPbBr ₃ Perovskite Nanocrystals by Heterovalent Doping. Journal of the American Chemical Society, 2017, 139, 731-737.	13.7	406
8	H ₂ O ₂ assisted room temperature oxidation of Ti ₂ C MXene for Li-ion battery anodes. Nanoscale, 2016, 8, 7580-7587.	5.6	396
9	CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15, 634-641.	16.0	357
10	Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. Journal of Materials Chemistry A, 2015, 3, 2844-2852.	10.3	293
11	Reticular Chemistry in Action: A Hydrolytically Stable MOF Capturing Twice Its Weight in Adsorbed Water. CheM, 2018, 4, 94-105.	11.7	282
12	Single crystal hybrid perovskite field-effect transistors. Nature Communications, 2018, 9, 5354.	12.8	255
13	Giant Photoluminescence Enhancement in CsPbCl ₃ Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Letters, 2018, 3, 2301-2307.	17.4	244
14	The structure and binding mode of citrate in the stabilization of gold nanoparticles. Nature Chemistry, 2017, 9, 890-895.	13.6	222
15	New Insights on Graphite Anode Stability in Rechargeable Batteries: Li Ion Coordination Structures Prevail over Solid Electrolyte Interphases. ACS Energy Letters, 2018, 3, 335-340.	17.4	217
16	Graphitic Nanocarbon with Engineered Defects for Highâ€Performance Potassiumâ€ion Battery Anodes. Advanced Functional Materials, 2019, 29, 1903641.	14.9	212
17	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	17.4	208
18	Ultrathin Cu ₂ O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8, 6173-6179.	5.6	191

#	Article	IF	CITATIONS
19	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	16.0	187
20	MXenes for Plasmonic Photodetection. Advanced Materials, 2019, 31, e1807658.	21.0	175
21	Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 15637.	2.8	174
22	Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method. Nanoscale, 2012, 4, 7038.	5.6	171
23	A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 2015, 3, 18963-18969.	10.3	171
24	Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.	12.8	142
25	Hollow Au@Pd and Au@Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions. Journal of Materials Chemistry, 2012, 22, 25003.	6.7	140
26	Highly Stable Supercapacitors with Conducting Polymer Coreâ€ S hell Electrodes for Energy Storage Applications. Advanced Energy Materials, 2015, 5, 1401805.	19.5	139
27	Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma. Nano Energy, 2016, 30, 846-852.	16.0	136
28	Rugae-like FeP nanocrystal assembly on a carbon cloth: an exceptionally efficient and stable cathode for hydrogen evolution. Nanoscale, 2015, 7, 10974-10981.	5.6	133
29	Assembly of Atomically Precise Silver Nanoclusters into Nanocluster-Based Frameworks. Journal of the American Chemical Society, 2019, 141, 9585-9592.	13.7	132
30	Semi-metallic, strong and stretchable wet-spun conjugated polymer microfibers. Journal of Materials Chemistry C, 2015, 3, 2528-2538.	5.5	130
31	Ni–Sn-Supported ZrO ₂ Catalysts Modified by Indium for Selective CO ₂ Hydrogenation to Methanol. ACS Omega, 2018, 3, 3688-3701.	3.5	130
32	Zrâ€Doped Indium Oxide (IZRO) Transparent Electrodes for Perovskiteâ€Based Tandem Solar Cells. Advanced Functional Materials, 2019, 29, 1901741.	14.9	124
33	Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of Ethane. ACS Catalysis, 2016, 6, 2852-2866.	11.2	120
34	Light-Induced Self-Assembly of Cubic CsPbBr ₃ Perovskite Nanocrystals into Nanowires. Chemistry of Materials, 2019, 31, 6642-6649.	6.7	119
35	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie - International Edition, 2019, 58, 17849-17855.	13.8	117
36	Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 32, 470-478.	16.0	116

#	Article	IF	CITATIONS
37	A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. Journal of the American Chemical Society, 2016, 138, 13770-13773.	13.7	114
38	Tantalum Nitride Electronâ€Selective Contact for Crystalline Silicon Solar Cells. Advanced Energy Materials, 2018, 8, 1800608.	19.5	112
39	Morphological and Electrochemical Cycling Effects in MnO ₂ Nanostructures by 3D Electron Tomography. Advanced Functional Materials, 2014, 24, 3130-3143.	14.9	107
40	CO ₂ conversion: the potential of porous-organic polymers (POPs) for catalytic CO ₂ –epoxide insertion. Journal of Materials Chemistry A, 2016, 4, 7453-7460.	10.3	107
41	Surface Passivation of MoO ₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes. ACS Applied Materials & Interfaces, 2015, 7, 13154-13163.	8.0	105
42	Low overpotential and high current CO2 reduction with surface reconstructed Cu foam electrodes. Nano Energy, 2016, 27, 121-129.	16.0	100
43	Pyridine-Induced Dimensionality Change in Hybrid Perovskite Nanocrystals. Chemistry of Materials, 2017, 29, 4393-4400.	6.7	100
44	Nitridated Fibrous Silica (KCC-1) as a Sustainable Solid Base Nanocatalyst. ACS Sustainable Chemistry and Engineering, 2013, 1, 1192-1199.	6.7	99
45	A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide. Nanoscale, 2016, 8, 17782-17787.	5.6	98
46	Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt ₂ Ag ₂₃ Cl ₇ (PPh ₃) ₁₀] Nanoclusters. Journal of the American Chemical Society, 2017, 139, 1053-1056.	13.7	98
47	Microwave-Assisted Self-Doping of TiO ₂ Photonic Crystals for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2014, 6, 691-696.	8.0	97
48	Turning a Methanation Co Catalyst into an In–Co Methanol Producer. ACS Catalysis, 2019, 9, 6910-6918.	11.2	88
49	Covalent Assembly of Twoâ€Dimensional COFâ€onâ€MXene Heterostructures Enables Fast Charging Lithium Hosts. Advanced Functional Materials, 2021, 31, 2101194.	14.9	83
50	Symmetric synergy of hybrid CoS ₂ –WS ₂ electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 15552-15558.	10.3	81
51	[Cu ₈₁ (PhS) ₄₆ (^{<i>t</i>} BuNH ₂) ₁₀ (H) _{32<!--<br-->Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705.}	sub>] <suj 13.7</suj 	p>3+ 81
52	Highly Selective and Complete Conversion of Cellobiose to Gluconic Acid over Au/Cs ₂ HPW ₁₂ O ₄₀ Nanocomposite Catalyst. ChemCatChem, 2011, 3, 1294-1298.	3.7	80
53	Organic Acid Etching Strategy for Dendrite Suppression in Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2022, 12, 2102797.	19.5	79
54	Mechanistic Insight into the Stability of HfO ₂ oated MoS ₂ Nanosheet Anodes for Sodium Ion Batteries. Small. 2015, 11, 4341-4350.	10.0	78

#	Article	IF	CITATIONS
55	Controlled Surface Segregation Leads to Efficient Cokeâ€Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane. ChemCatChem, 2015, 7, 819-829.	3.7	78
56	Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chemical Science, 2020, 11, 5434-5440.	7.4	78
57	Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances. Small, 2015, 11, 5214-5221.	10.0	76
58	[Cu ₆₁ (S ^t Bu) ₂₆ S ₆ Cl ₆ H ₁₄] ^{+A Core–Shell Superatom Nanocluster with a Quasi-<i>J</i>an "18-Crown-6―Metal-Sulfide-like Stabilizing Belt. , 2019, 1, 297-302.}	+:	76
59	Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti ₃ C ₂ T _x MXene. Chemical Communications, 2020, 56, 6090-6093.	4.1	76
60	Deep-Ultraviolet Photodetection Using Single-Crystalline β-Ga ₂ O ₃ /NiO Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 35095-35104.	8.0	75
61	Band Alignment at GaN/Single-Layer WSe ₂ Interface. ACS Applied Materials & Interfaces, 2017, 9, 9110-9117.	8.0	72
62	Photocatalysis with Chromiumâ€Đoped TiO ₂ : Bulk and Surface Doping. ChemSusChem, 2014, 7, 1361-1371.	6.8	68
63	Enhancement of Dielectric Permittivity of Ti ₃ C ₂ T _{<i>x</i>} MXene/Polymer Composites by Controlling Flake Size and Surface Termination. ACS Applied Materials & Interfaces, 2019, 11, 27358-27362.	8.0	68
64	Atomic Layer Deposition of Vanadium Oxide as Holeâ€Selective Contact for Crystalline Silicon Solar Cells. Advanced Electronic Materials, 2020, 6, 2000467.	5.1	67
65	Palladium Nanoparticles Supported on Fibrousâ€Structured Silica Nanospheres (KCCâ€1): An Efficient and Selective Catalyst for the Transfer Hydrogenation of Alkenes. ChemCatChem, 2015, 7, 635-642.	3.7	66
66	Determination of band offsets at GaN/single-layer MoS2 heterojunction. Applied Physics Letters, 2016, 109, .	3.3	64
67	Direct versus ligand-exchange synthesis of [PtAg ₂₈ (BDT) ₁₂ (TPP) ₄] ^{4â^'} nanoclusters: effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale, 2017, 9, 9529-9536.	5.6	62
68	Design of a core–shell Pt–SiO2 catalyst in a reverse microemulsion system: Distinctive kinetics on CO oxidation at low temperature. Journal of Catalysis, 2016, 340, 368-375.	6.2	61
69	Polydopamine/Cysteine surface modified isoporous membranes with self-cleaning properties. Journal of Membrane Science, 2017, 529, 185-194.	8.2	60
70	Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li–S Batteries. ACS Nano, 2020, 14, 17163-17173.	14.6	55
71	Heterostructured MXene and g-C3N4 for high-rate lithium intercalation. Nano Energy, 2019, 65, 104030.	16.0	54
72	Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCCâ€1) as Efficient Heterogeneous Catalysts for CO Oxidation. ChemCatChem, 2016, 8, 1671-1678.	3.7	50

#	Article	IF	CITATIONS
73	[Cu ₁₅ (PPh ₃) ₆ (PET) ₁₃] ²⁺ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839.	10.0	50
74	Palladium supported on natural phosphate: Catalyst for Suzuki coupling reactions in water. Applied Catalysis A: General, 2013, 450, 13-18.	4.3	47
75	Inherent electrochemistry and charge transfer properties of few-layered two-dimensional Ti ₃ C ₂ T _x MXene. Nanoscale, 2018, 10, 17030-17037.	5.6	46
76	A Highly Conductive Titanium Oxynitride Electronâ€Selective Contact for Efficient Photovoltaic Devices. Advanced Materials, 2020, 32, e2002608.	21.0	46
77	[Cu ₃₆ H ₁₀ (PET) ₂₄ (PPh ₃) ₆ Cl ₂] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society, 2021, 143, 11026-11035.	13.7	46
78	Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors. Journal of Physical Chemistry Letters, 2016, 7, 3913-3919.	4.6	43
79	Exploring the Potential of Different-Sized Supported Subnanometer Pt Clusters as Catalysts for Wet Chemical Applications. ACS Catalysis, 2017, 7, 4152-4162.	11.2	41
80	Use of the Phenâ€NaDPO:Sn(SCN) ₂ Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905810.	14.9	41
81	[Cu ₂₃ (PhSe) ₁₆ (Ph ₃ P) ₈ (H) ₆] · BF _{ Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly. , 2021, 3, 90-99.}	4:	41
82	Highâ€Performance Monolayer MoS ₂ Films at the Wafer Scale by Twoâ€Step Growth. Advanced Functional Materials, 2019, 29, 1901070.	14.9	40
83	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	4.1	39
84	Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy. Applied Physics Letters, 2017, 110, .	3.3	38
85	Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films. Applied Physics Letters, 2010, 97, .	3.3	37
86	Photophysical Properties of SrTaO ₂ N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation. Chemistry of Materials, 2017, 29, 3989-3998.	6.7	37
87	Novel Pâ€Type Wide Bandgap Manganese Oxide Quantum Dots Operating at Deep UV Range for Optoelectronic Devices. Advanced Optical Materials, 2019, 7, 1900801.	7.3	35
88	Synthesis and Characterization of Iron-Doped TiO2 Nanoparticles Using Ferrocene from Flame Spray Pyrolysis. Catalysts, 2021, 11, 438.	3.5	31
89	Nanoroses of Nickel Oxides: Synthesis, Electron Tomography Study, and Application in CO Oxidation and Energy Storage. ChemSusChem, 2012, 5, 1241-1248.	6.8	30
90	Type-I band alignment at MoS2/In0.15Al0.85N lattice matched heterojunction and realization of MoS2 quantum well. Applied Physics Letters, 2017, 111, .	3.3	30

#	Article	IF	CITATIONS
91	Electropolymerization growth of an ultrathin, compact, conductive and microporous (UCCM) polycarbazole membrane for high energy Li–S batteries. Nano Energy, 2020, 73, 104769.	16.0	29
92	A high-throughput reactor system for optimization of Mo–V–Nb mixed oxide catalyst composition in ethane ODH. Catalysis Science and Technology, 2015, 5, 4164-4173.	4.1	28
93	Nanoscale Crossâ€Point Resistive Switching Memory Comprising pâ€Type SnO Bilayers. Advanced Electronic Materials, 2015, 1, 1400035.	5.1	27
94	Oxidant-Dependent Thermoelectric Properties of Undoped ZnO Films by Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 2794-2802.	6.7	27
95	Perovskite-Based Artificial Multiple Quantum Wells. Nano Letters, 2019, 19, 3535-3542.	9.1	27
96	Fe-N-C Electrocatalysts for Oxygen Reduction Reaction Synthesized by Using Aniline Salt and Fe 3+ /H 2 O 2 Catalytic System. Electrochimica Acta, 2014, 146, 809-818.	5.2	26
97	Direct Functionalization of Nanodiamonds with Maleimide. Chemistry of Materials, 2014, 26, 2766-2769.	6.7	25
98	MoS _x -coated NbS ₂ nanoflakes grown on glass carbon: an advanced electrocatalyst for the hydrogen evolution reaction. Nanoscale, 2018, 10, 3444-3450.	5.6	24
99	High‥ield Ti ₃ C ₂ T <i>_x</i> MXene–MoS ₂ Integrated Circuits. Advanced Materials, 2022, 34, e2107370.	21.0	24
100	Impact of Soft Annealing on the Performance of Solution-Processed Amorphous Zinc Tin Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2013, 5, 3587-3590.	8.0	22
101	Extraordinary Carrier Diffusion on CdTe Surfaces Uncovered by 4D Electron Microscopy. CheM, 2019, 5, 706-718.	11.7	21
102	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 20752-20761.	8.0	20
103	Multistate Resistive Switching Memory for Synaptic Memory Applications. Advanced Materials Interfaces, 2016, 3, 1600192.	3.7	19
104	Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids. Journal of the American Chemical Society, 2017, 139, 10232-10238.	13.7	18
105	Iron–Cobalt-Based Materials: An Efficient Bimetallic Catalyst for Ammonia Synthesis at Low Temperatures. ACS Catalysis, 2022, 12, 587-599.	11.2	17
106	Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition. Catalysis Communications, 2012, 26, 248-252.	3.3	16
107	Twofold Porosity and Surface Functionalization Effect on Pt–Porous GaN for High-Performance H ₂ -Gas Sensors at Room Temperature. ACS Omega, 2019, 4, 1678-1684.	3.5	16
108	Active and stable Fe-based catalyst, mechanism, and key role of alkali promoters in ammonia synthesis. Journal of Catalysis, 2021, 394, 353-365.	6.2	16

#	Article	IF	CITATIONS
109	Electrochemical Thinâ€Film Transistors using Covalent Organic Framework Channel. Advanced Functional Materials, 2022, 32, .	14.9	16
110	Imaging Localized Energy States in Silicon-Doped InGaN Nanowires Using 4D Electron Microscopy. ACS Energy Letters, 2018, 3, 476-481.	17.4	15
111	Evolution of cellulose acetate to monolayer graphene. Carbon, 2021, 174, 24-35.	10.3	15
112	Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	14
113	Single-Crystalline All-Oxide α–γ–β Heterostructures for Deep-Ultraviolet Photodetection. ACS Applied Materials & Interfaces, 2020, 12, 53932-53941.	8.0	14
114	Interface Matters: Enhanced Photoluminescence and Long-Term Stability of Zero-Dimensional Cesium Lead Bromide Nanocrystals <i>via</i> Gas-Phase Aluminum Oxide Encapsulation. ACS Applied Materials & Interfaces, 2020, 12, 35598-35605.	8.0	14
115	Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film. Journal of Applied Physics, 2013, 113, 044116.	2.5	13
116	The impact of surface chemistry and texture on the CO2 uptake capacity of graphene oxide. Inorganica Chimica Acta, 2018, 482, 470-477.	2.4	13
117	Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. Science Advances, 2020, 6, .	10.3	13
118	Nano-design of quantum dot-based photocatalysts for hydrogen generation using advanced surface molecular chemistry. Physical Chemistry Chemical Physics, 2015, 17, 1001-1009.	2.8	12
119	One-step growth of reduced graphene oxide on arbitrary substrates. Carbon, 2019, 144, 457-463.	10.3	12
120	Optical Properties and First-Principles Study of CH ₃ NH ₃ PbBr ₃ Perovskite Structures. ACS Omega, 2020, 5, 12313-12319.	3.5	12
121	Real-Space Mapping of Surface-Oxygen Defect States in Photovoltaic Materials Using Low-Voltage Scanning Ultrafast Electron Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 7760-7767.	8.0	12
122	Engineering Bandâ€Type Alignment in CsPbBr ₃ Perovskiteâ€Based Artificial Multiple Quantum Wells. Advanced Materials, 2021, 33, e2005166.	21.0	12
123	Sixâ€Fold Mobility Improvement of Indiumâ€Zinc Oxide Thinâ€Film Transistors Using a Simple Water Treatment. Advanced Electronic Materials, 2015, 1, 1500014.	5.1	11
124	Achieving room-temperature M2-phase VO2 nanowires for superior thermal actuation. Nano Research, 2021, 14, 4146-4153.	10.4	10
125	Naturally Extracted Hydrophobic Solvent and Self-Assembly in Interfacial Polymerization. ACS Applied Materials & M	8.0	10
126	Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride. ChemistrySelect, 2016, 1, 290-296.	1.5	9

#	Article	IF	CITATIONS
127	Improved H2 detection performance of GaN sensor with Pt/Sulfide treatment of porous active layer prepared by metal electroless etching. International Journal of Hydrogen Energy, 2021, 46, 4614-4625.	7.1	8
128	Transmission electron microscopy of carbon-coated and iron-doped titania nanoparticles. Nanotechnology, 2016, 27, 365709.	2.6	6
129	A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient hydrogenolysis of ester. Catalysis Science and Technology, 2017, 7, 581-586.	4.1	6
130	A strategy to convert propane to aromatics (BTX) using TiNp ₄ grafted at the periphery of ZSM-5 by surface organometallic chemistry. Dalton Transactions, 2019, 48, 6611-6620.	3.3	6
131	Thermal treatment of hydroxyl functionalized polytriazole and its effect on gas transport: From crosslinking to carbon molecular sieve. Journal of Membrane Science, 2022, 642, 119963.	8.2	6
132	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation. , 2021, 1, 100008.		6
133	Microemulsion prepared Ni ₈₈ Pt ₁₂ for methane cracking. RSC Advances, 2017, 7, 4078-4082.	3.6	5
134	Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce CO _x -free hydrogen. RSC Advances, 2017, 7, 43546-43550.	3.6	4
135	Imaging the Reduction of Electron Trap States in Shelled Copper Indium Gallium Selenide Nanocrystals Using Ultrafast Electron Microscopy. Journal of Physical Chemistry C, 2018, 122, 15010-15016.	3.1	4
136	Characterization of Silica-Supported Tungsten Bis- and Tris-hydrides by Advanced Solid-State NMR. Journal of Physical Chemistry C, 2021, 125, 12819-12826.	3.1	3
137	MnO ₂ : Morphological and Electrochemical Cycling Effects in MnO ₂ Nanostructures by 3D Electron Tomography (Adv. Funct. Mater. 21/2014). Advanced Functional Materials, 2014, 24, 3106-3106.	14.9	2
138	Nanocrystals: Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances (Small 39/2015). Small, 2015, 11, 5328-5328.	10.0	1
139	Engineering of refractive index in sulfide chalcogenide glass by direct laser writing. , 2010, , .		0
140	Optical Properties and First Principles Study of CH3NH3PbBr3 Perovskite Structures for Solar Cell Application. Lecture Notes in Electrical Engineering, 2021, , 275-282.	0.4	0