Colin R. Harwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4130901/publications.pdf

Version: 2024-02-01

39 papers 2,058 citations

218381 26 h-index 301761 39 g-index

42 all docs 42 docs citations

42 times ranked 2319 citing authors

#	Article	IF	CITATIONS
1	The ins and outs of <i>Bacillus</i> proteases: activities, functions and commercial significance. FEMS Microbiology Reviews, 2022, 46, .	3.9	33
2	The possible occurrence of iron-dependent anaerobic methane oxidation in an Archean Ocean analogue. Scientific Reports, 2021, 11, 1597.	1.6	6
3	Nitrate-dependent anaerobic methane oxidation and chemolithotrophic denitrification in a temperate eutrophic lake. FEMS Microbiology Ecology, 2021, 97, .	1.3	9
4	Impact of mass migrations on the clonal variation of clinical Staphylococcus aureus strains isolated from the Western region of Saudi Arabia. Journal of Infection and Public Health, 2019, 12, 317-322.	1.9	14
5	<i>Bacillus subtilis,</i> the model Gramâ€positive bacterium: 20Âyears of annotation refinement. Microbial Biotechnology, 2018, 11, 3-17.	2.0	95
6	Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu). Limnology and Oceanography, 2018, 63, 687-701.	1.6	46
7	Editorial for the thematic issue on "Industrial Microbiology― FEMS Microbiology Letters, 2018, 365, .	0.7	3
8	Exploring the Nonconserved Sequence Space of Synthetic Expression Modules in <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2018, 7, 1773-1784.	1.9	38
9	Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 2018, 42, 721-738.	3.9	162
10	Extracellular Self-Assembly of Functional and Tunable Protein Conjugates from <i>Bacillus subtilis</i> . ACS Synthetic Biology, 2017, 6, 957-967.	1.9	38
11	Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere, 2017, 168, 756-764.	4.2	34
12	Effect of Genome Position on Heterologous Gene Expression in <i>Bacillus subtilis</i> : An Unbiased Analysis. ACS Synthetic Biology, 2016, 5, 942-947.	1.9	56
13	Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon. Microbiological Research, 2015, 170, 131-138.	2.5	10
14	Proteomic analysis of <i>Bacillus subtilis</i> strains engineered for improved production of heterologous proteins. Proteomics, 2013, 13, 3298-3308.	1.3	44
15	Extracytoplasmic Proteases Determining the Cleavage and Release of Secreted Proteins, Lipoproteins, and Membrane Proteins in <i>Bacillus subtilis</i> Journal of Proteome Research, 2013, 12, 4101-4110.	1.8	64
16	Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiology (United Kingdom), 2012, 158, 636-647.	0.7	16
17	Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis. PLoS ONE, 2011, 6, e18140.	1.1	36
18	Combined proteomic and transcriptomic analysis of the response of <i>Bacillus anthracis</i> to oxidative stress. Proteomics, 2011, 11, 3036-3055.	1.3	28

#	Article	IF	Citations
19	Heterologous Protein Secretion by Bacillus Species. Advances in Applied Microbiology, 2010, 73, 1-25.	1.3	93
20	e-Science: relieving bottlenecks in large-scale genome analyses. Nature Reviews Microbiology, 2008, 6, 948-954.	13.6	22
21	Bacillus protein secretion: an unfolding story. Trends in Microbiology, 2008, 16, 73-79.	3.5	150
22	Whole genome microarray analysis of the expression profile of Escherichia coli in response to exposure to para-nitrophenol. Advances in Experimental Biology, 2008, 2, 221-248.	0.1	2
23	Phosphate Starvation Induces the Sporulation Killing Factor of Bacillus subtilis. Journal of Bacteriology, 2006, 188, 5299-5303.	1.0	29
24	The extracellular and cytoplasmic proteomes of the non-virulentBacillus anthracis strain UM23C1-2. Proteomics, 2005, 5, 3684-3695.	1.3	54
25	Genome-Wide Transcriptional Analysis of the Phosphate Starvation Stimulon of Bacillus subtilis. Journal of Bacteriology, 2005, 187, 8063-8080.	1.0	69
26	Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. Microbiology (United Kingdom), 2004, 150, 2619-2628.	0.7	39
27	Transcriptional Regulation of the phoPR Operon in Bacillus subtilis. Journal of Bacteriology, 2004, 186, 1182-1190.	1.0	61
28	Post-translocational folding of secretory proteins in Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 311-27.	1.9	89
29	From Gene Regulation to Gene Function: Regulatory Networks inBacillus subtilis. Comparative and Functional Genomics, 2002, 3, 37-41.	2.0	9
30	Regulatory interactions between the Pho and $\ddot{l}fB$ -dependent general stress regulons of Bacillus subtilis. Microbiology (United Kingdom), 2002, 148, 1593-1602.	0.7	93
31	From Genome to Function: Systematic Analysis of the Soil BacteriumBacillus subtilis. Comparative and Functional Genomics, 2001, 2, 22-24.	2.0	7
32	The influence of secretory-protein charge on late stages of secretion from the Gram-positive bacterium Bacillus subtilis. Biochemical Journal, 2000, 350, 31-39.	1.7	25
33	d-Alanine Substitution of Teichoic Acids as a Modulator of Protein Folding and Stability at the Cytoplasmic Membrane/Cell Wall Interface of Bacillus subtilis. Journal of Biological Chemistry, 2000, 275, 26696-26703.	1.6	100
34	Effects of phosphate limitation on agarase production by Streptomyces lividans TK21. FEMS Microbiology Letters, 1998, 158, 107-113.	0.7	12
35	The influence of protein folding on late stages of the secretion of α-amylases fromBacillus subtilis. FEBS Letters, 1998, 430, 385-389.	1.3	43
36	Influence of a Cell-Wall-Associated Protease on Production of α-Amylase by <i>Bacillus subtilis</i> Applied and Environmental Microbiology, 1998, 64, 2875-2881.	1.4	77

#	Article	IF	CITATIONS
37	An Internal FK506-Binding Domain is the Catalytic Core of the Prolyl Isomerase Activity Associated with the Bacillus Subtilis Trigger Factor. FEBS Journal, 1997, 244, 59-65.	0.2	20
38	Sequencing and functional analysis of the genome of Bacillus subtilisstrain 168. FEBS Letters, 1996, 389, 84-87.	1.3	75
39	Bacillus subtilis and its relatives: molecular biological and industrial workhorses. Trends in Biotechnology, 1992, 10, 247-256.	4.9	245